
ESA Summer School

Frascati August 2006

Assimilation of T&S and Altimetry into ocean
models with water mass constraints

• Applications of ocean data assimilation
– Reanalysis, Seasonal forecasting, Operational oceanography

• Key ocean data sets
– Altimeter, In Situ, SST

• Sequential Assimilation methods

• Constraints from oceanography
– Vertical projection of altimeter sea level

– Assimilating Temperature with Salinity corrections

– Assimilating Salinity as S(T) instead of S(z)

• Detecting and Accounting for Bias Errors

• Conclusions
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Ocean Reanalysis for Climate Studies

Heat content for Anomaly for the upper 3000m

See Gregory et al. [2004]

• Global and basin

   Scale Heat Content

• Salinity/Freshwater

Hydrological cycle

    changes

• CO2 sequestration

• North Atlantic 

  Deep Water Volume

• Changes in southern ocean

  T/S properties

• Changes in strait transports

  eg. Arctic overflows (Dixon et al)
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4D Var approach to state estimation

Main drawback to ocean inverse work is steady state assumption,

Ship section data often measured years apart

In any case what is exact value of “Mean Circulation”

ECCO group (Stammer and Wunsch) are using Least Squares 

Cost function approach to model time-evolving circulation over 

1992-2002 period, with low resolution model=> 4DVar method

Is this the only way

to assimilate ocean

data for climate

reanalysis studies??
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T profiles from Voluntary Observing ships (XBT) and
buoy locations in 1993

69733 points

Historical T profiles

N Atlantic
Upper Ocean Upper Ocean T(zT(z) 1993) 1993

Now XBTs reach 800m

Being superceded by Argo

Historical availability of ocean data
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http://www.ecmwf.int/products/forecasts/d/charts/seasonal /

Assimilation for Seasonal Weather Forecasting

Based on coupled ocean-atmosphere

model with ocean data assimilation

run in Ensemble mode => 6 months

eg. ECMWF 
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ECMWF Forecasts for 

the 1997 El Nino

••  Seasonal forecasting operational

   at ECMWF, NASA etc.

• TAO buoys provide temperatures

   and currents to 450m

• Assimilate into coupled 

   ocean-atmosphere global models

• Forecast timescale ~6 months

• Forecasting El Nino onset;

   Nino 3 surf. Temp. anomalies 

• Whole set of climate parameters

   also predicted, eg. rainfall, 

   surface T anomalies

Assimilation for Seasonal Weather Forecasting
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Operational Ocean Forecasting

http://bulletin.mersea.eu.org/html/produits/mersea_vs/ 

Ocean only models forced with winds and fluxes from Met forecasts

Assimilating satellite and in situ ocean data (eg. GOOS and GODAE)

Products from the EU MERSEA Project

6km POLCOMS (UK)
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Key Data for Operational Oceanography

In Situ data from Argo and TAO
Altimetric Sea level anomalies

Note: New

GOCE Geoid will

be vital
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Key data sets for operational oceanography

High resolution SST analyses from Microwave and IR satellites

NCOF OSTIA product  (1km resolution)
http://ghrsst-pp.metoffice.com/pages/latest_analysis/ostia.html 
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• Sequential Assimilation schemes, Kalman Filter + variants and

simplifications are universally used

• Although Operational NWP benefited from 4DVar eg. ECMWF,

4DVar is expensive in oceans, and models too BIASED?

• Key information is the Background Error Covariance

– Needed to link Observation, SSH or T(z), S(z) profile with changes in

whole model state vector

– Error covariances poorly known from observations

– Can use physically based covariance information relating

• Altimetric SSH with T,S profiles in the water column

• Temperature profiles T(z) with Salinity profiles S(z)

• Horizontal correlations of S(T) compared with S(z)

• Consider some idealised assimilation experiments in order to

understand ocean assimilation constraints (Altimeter data)

Assimilation for Operational Oceanography
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Potential Vorticity q1 – q4 1 1  ––  44

Haines (1991)

Quasi-Geostrophic Box model of the Subtropical

and Subpolar ocean gyres

Dq2,3/Dt = 0

Vertical correlations of , q completely different => useful
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q1 – q4

Twin experiment assimilation of 1 every 40 days 

 1 1  ––  44

Note that q2 – q4 still converge
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Twin experiment in OCCAM 36 level
model assimilating Sea surface height

Fox et al 2001a

SSH

u,v

Temp

Salinity

Note that subsurface T,S still converge
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Relationship between Altimeter and
In Situ Assimilation

Altimeter

SSH

Water Mass 

Advection

Modified water formation sites

Water properties, 

Formation rates, etc..

In Situ

Hydrographic data

Currents
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Relationship between Altimeter and
In Situ Assimilation

Large data volume

Global map/10d

Water Mass 

Advection

Modified water formation sites

Water properties, 

Formation rates, etc..

T(z) mid-volume

S(z) low-volume

(pre-Argo)

Currents

Conserve 

unobserved 

water properties
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Altimeter assimilation by thermocline
displacement h

Cooper and Haines (1996) extended idea to Primitive Equation models

Model q( ) is preserved by 

Assimilation provided;

Solve for h by assuming deep

pressure unchanged

(Different closure to Haines 1991;

 1  observed, q2 ,q3  and 4 from model)

Dq( )/Dt = 0

= Isopycnal displacement
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Assimilation

Ship Validation

WOCE Cruise

500m

0m

55 N15 S

Assimilation of Satellite Altimeter

Fox and Haines 2003

Global Model

25km Resolution
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Nice features of altimeter assimilation with
conserved water masses

• Simple to apply (don’t need pre-calculated covariances)

• Can derive implied vertical covariances analytically so can
incorporate into standard assimilation methods

• Vertical covariances are automatically time and flow dependent

• Conservation of water properties allows other assimilation data
to determine water mass properties and volumes. Particularly
important for Reanalysis and Climate work => gives method
similar properties to 4DVar

• Has been used at;

– UK Met Office, ECMWF, Mercator (in SEEK filter), HYCOM

• Other Assimilation methods sharing water conservation property

– Oschlies and Willebrand 96: Velocity covariances

– Gavart and De Mey 97: Potential density depth covariances

– Greatbatch et al 2001:- Semi-prognostic method
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Assimilation of T profile data

• Historically T(z) profiles make up vast bulk of in situ ocean

measurements

• MBTs down to 400m before 1970’s

• XBTs down to 800m after 1970’s

• Voluntary Observing Ship program

• Highly non-isotropic coverage

• Basis of Levitus estimates of climatic warming of oceans

• El Nino TAO array also mainly T(z) to 400m

• Being superceded by Argo profiling floats

– T and S down to 2000m with near isotropic coverage
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Assimilation of T profile data at ECMWF (pre 2000)

• Assimilation of TAO  T profiles from tropical Pacific has been

main focus of all seasonal forecasting projects

• ECMWF use OI assimilation, Smith et al (1991)

• 10 days of data assimilated together

• T(z) profiles vertically interpolated to model levels

• Separate horizontal OI on each model level

       1500km zonal, 200km meridional scales at Equator

• Observations and model T data given equal weight

• TAO  T profiles only reach 450m

• Salinity not updated
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Mean meridional sections 30W from 1990-98

ECMWF assimilation experiments 

Old assimilation 

T(y,z) S(y,z)

sections

T/S preserving 

assimilation 

sections
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T-profile assimilation with T/S conservation

Troccoli and 

Haines (1999)

Old Analysis

profile

New Analysis

profile
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ECMWF Forecasts of
Nino3 temperatures

5 member ensemble

forecasts started every 

3 months from 1993-1997 

= 100 forecasts

C-OI = Original T assimilation

C-T+A= + Altimeter data

C-TA+TS = + T/S conservation scheme

Segschneider et al 2001
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Complementarity between Altimeter
and T profile assimilation

• Altimeter = Vertical thermocline displacement

• T-profile = S(T) preserved + displacement

• Both preserve S(T) which neither observe

• Both preserve volume( ) or volume(T) except

• T-profile => changes in volume( ) in upper water

column where observations made
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Assimilation of S profile data

• Ocean salinity difficult to measure (Conductivity corrected for T)

• CTD measured from research ships: eg. Section data such as

WOCE or specific local research programs

• Very little historical data

• Important climatic signals in Salinity variability

– Great Salinity Anomaly; Dixon et al. (1996)

– Changes in polar-equator salinity gradient => changes in

hydrological cycle (evaporation-transport-precipitation) Curry et al

(2003)

– Controls density structure in polar oceans

• Much Salinity variability is highly correlated with T variability

– How to take advantage of this during assimilation of S data?

– Otherwise S(z) gives very little additional information over T(z)
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Salinity variance in z and T space

104 CTD profiles

over 10 days in 

W. Equatorial Pacific

Reduced variance in

S(T) suggests value of 

T/S preservation during

assimilation

Troccoli and

Haines (1999)

Model Representivity

of S(T) probably

better than for 

S(z) or T(z)
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Ratio (S(z) variance / S(T) variance) in 1x1° bins for 40 years of data.
The 300m depth and the mean isotherm at that depth define salinities.
Bins with ratio > 1 black; ratio < 1 dark grey.

Ratio of S variance on depth surface and Isotherms

Haines et al (2006)

(WOD01 data)
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Bermuda Salinity timeseries

S(17.4C)

S(400m)

S(z) has more 

Variability at

High Frequencies

Dynamical Origin

Remaining variability

in S(T) 

Lower Frequency

Thermodynamic Origin

Lower Representivity 

error

Different Spatial 

Scales too
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One point S correlation maps HadCEM 1/3 model

S(z) S(T)

Expect error 

Covariances of 

S(T) to be larger

Scale than S(z) 

=> Useful in 

assimilation of 

Salinity data,

especially for

Reanalysis
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Assimilation of Salinity at ECMWF

Idea: perform a second OI using T+S data to correct the T/S relationship
(Haines et al 2006: Mon. Weath. Rev.)

T/S

conserved

alt
T/S

Changed

insituinsitu
ST ,

aa
ST ,

T/S

conserved

insitu
T

'
,

aa
ST

))(H)((K)()( '
zSzSzSzS

boaa
+= ))(H)((K)()( ''

abaoaaaa
TSTSTSTS +=

 Two stage salinity assimilation process (Implemented by Arthur Vidard)
1)  TH99: S(T) unaltered by T assimilation.

 S(T) = 0 ; ST(z)  0
2) Salinity assimilation: S(T)  0 ; SS(z)  0

Allow an increase in correlation radius in K’
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In Situ Assimilation method

Ta(z) = Tb(z) + KT [To(z) - H Tb(z)]

Sa(z) = Sb(z) + KSz [So(z) - H Sb(z)]

Standard method:

Ta(z) = Tb(z) + KT [To(z) - H Tb(z)]

S’a(z) = Sb(z) + ST, such that

ST  ensures S’a(Ta) = Sb(Ta)

S(T) algorithm:

Sa(Ta) = S’a(Ta) + KST [So(Ta) - H Sb(Ta)]

---> KST allows spreading over much greater distances 

             than KSz due to increased covariance length scales.

Also, second salinity increment is independent of the 1st!

Observed profile
Model

background

Desired analysis

from a T obs

from an S obs

To

Ta

Tb

Sb Sa So
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Heat flux

Volume flux anomaly

THC Strength

Assimilation vs Control: fluxes at 26N

Southward transport

THC Strength

Heat flux

Recovering THC strength from an ECMWF
Ocean Reanalysis

Thermohaline overturning circulation

in the North Atlantic

Section analyses from Bryden et al 2005
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Altimeter Assimilation

Displacement h => Gross Isopycnal geometry

    + Currents (geostrophy)

• Volume and T/S  properties preserved on isopycnals

• Adiabatic (Thermodynamically Reversible)

T Profile Assimilation

T(z) => Isothermal Water Volumes

• S(T) properties preserved (since salinity is not observed)

• Volumes and T/S preserved below deepest observation

S(T) Assimilation

S(T) => Isopycnal Water Properties

• Large scale, slow variations associated with ventilation

  and climatic change

Conservation properties in sequential assimilation
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WOCE Atlantic 

Section A16

Note:

Water mass origins

                  AIW,

                  NADW,

                  ABW

SS NN

Lagrangian conservation

of water properties 

important in assimilation  

Water property distributions

give qualitative information

on circulation pathways  
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Improving T through
S assimilation
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•  Temperature assimilation

    can improve salinity directly

    since S(T) conserved

•   Salinity assimilation can 

    also improve Temperature,

    but only indirectly through 

    improved advection 

•   Obs - Background errors  

    Preliminary results from 

    ENACT project reanalysis

    1993-2001
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Error reductions through assimilation

Vidard et al
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Twin experiment in OCCAM 36 level
model assimilating Sea surface height

Fox et al 2001a

SSH

u,v

Temp

Salinity

Note that subsurface T,S still converge
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Bias and diagnostics of bias in ocean models

• Much of optimal assimilation theory assumes that the
models and observations are unbiased. This is
definitely not the case for ocean models

• Detection of bias is easy: if the innovations do not
average to zero then the model (or data) is biased

• In this case one of the main effects of data assimilation
is to counteract the bias eg. model drift

• Methods used to correct for bias in ocean models
– `Pressure Correction’ Bell et al (2000)

– Semi-prognostic method  Greatbatch….

• Having detected bias it should be accounted for in
assimilation error analysis or else the weighting of new
observations will be poorly handled

• Need to have a bias model
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Accounting for Bias in Data Assimilation

• Dee (2006) Review in QJRMS

• 3D Variational formulation easiest to understand (derivable from Bayesian
analysis; Drecourt et al; 2006)

2J(x,b,c) = (y-b-x)TR-1(y-b-x) +

(x-xf+c)TB-1(x-xf+c) +

(b-bf)TO-1(b-bf) +

(c-cf)TP-1(c-cf)

y =observation                                R =observation error covariance

x =model state                                B =model background error covariance

b =observation bias                      O =observation bias error covariance

c =model forecast bias                  P =model forecast bias error covariance

Superscript f are forecast values

Observation operators have been omitted

Minimise J wrt x,b,c
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Accounting for Bias in Data Assimilation

• Solution (Analysed variables a)

xa = (xf-cf) + K {(y-bf) – (xf-cf)} K = (B+P) [B+P+O+R]-1

ba = bf + F {(y-bf) – (xf-cf)} F = O [B+P+O+R]-1

ca = cf + G {(y-bf) – (xf-cf)} G = P [B+P+O+R]-1

or xa = (xf-ca) + K1{(y-ba) – (xf-ca)} K1 = B [B+R]-1

y =observation                                R =observation error covariance

x =model state                                B =model background error covariance

b =observation bias                        O =observation bias error covariance

c =model forecast bias                    P =model forecast bias error covariance

Usual problems are: (i) Knowing the Covariance errors

(ii) Sequential 3DVar requires bias models for

bf(t+1)= Mb[ba(t)];  cf(t+1)= Mc[c
a(t)];
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Comments on Bias Modelling

• Known Biases {bf (t); cf(t) known a priori eg. previous runs}

– xa = (xf-cf) + K {(y-bf) – (xf-cf)} K = (B+P)[B+P+O+R]-1

– bf (t) = 0; cf(t) = 0 is particular case

– (B+P) total model err cov.;  (O+R) total obs. err.

• Persistent Biases {bf(t+1)= ba(t);  cf(t+1)= ca(t) }

– xa = (xf-cf) + K {(y-bf) – (xf-cf)} K = (B+P)[B+P+O+R]-1

– ba = bf       + F {(y-bf) – (xf-cf)} F = O[B+P+O+R]-1

– ca = cf        + G {(y-bf) – (xf-cf)} G = P[B+P+O+R]-1

– If O,P i.e. F,G are small => may hope to converge to ~ constant b,c

– Simplifications also arise if P= B; O= R => all Innovations proportional

• Attribution of Bias: When are O,P sufficiently different to allow

identification of misfits {(y-bf) – (xf-cf)} ?

• Should always check total misfits are consistent with B+P+O+R
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Drift in ocean temperatures in tropical 

Pacific during 6 month free runs of ECMWF

coupled model

Drift must be removed to interpret ENSO forecasts

Stockdale 1997
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Accounting for bias during data assimilation

Mean assimilation T increments in 

Met Office assimilation in 

Equatorial Pacific, Bell et al 2002

xk+1 = M (xk , uk) deterministic model

xk variables, uk parameters, at time k

For a general biased model

xk+1 = Mt (xk , uk) + T(bk)

Mt true model, bk bias variables

Now define new State vector {xk,bk}

with model for bias evolution

bk+1 = W (bk , xk) + k,

k white noise

In sequential assimilation In sequential assimilation xxk k will converge to
  xxkk

tt
  

provided bias model W is correct
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Bell et al 2002 assumed Equatorial T bias due 

to wrong wind stress (x,y,t)

But they modelled the bias with pressure field pb(x,y,z,t)
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Example of Bias Modelling in Seasonal Forecasting

Mean T (Obs-Backgnd) misfits 

assuming Unbiased model

Mean T misfits using a Bias model

•  Method reduces undesirable transients while allowing T to approach Ttrue

•  Could one recover the cause of the bias (probably wind stress error)?

•  Similar method reduces misfits in Ocean Reanalysis; Chepurin et al (2005)

Zonal Temp. errors in Equatorial Pacific

Bell et al. (2000;2002)



ESA Summer School

Frascati August 2006

Bias diagnostics in a high-resolution
global ocean model

• No alteration of data assimilation (DA) procedure

• Aim is to diagnose mean misfits/innovations directly as biases in

physical processes

1 Assimilation impacts on Local Heat budget (or other tracers)

2 Assimilation impacts on water volumes in each temperature class

within an Extended Region, eg. N. Atlantic (c.f. ocean inverse

theory)

• Consider a model ‘held’ close to observational trajectory by DA

against a drift tendency

     (a) How do we quantify role of DA in preventing drift?

     (b) How do we identify drift with inadequacies of physics?
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Conclusions

• Lagrangian conservation of water properties provides useful

constraints for both steady state ocean inverse problems and

time evolving ocean data assimilation

• Generates state-dependent multivariate covariances in a

natural way

• Provides a framework for obtaining climate quality ocean

reanalyses using sequential data assimilation

• Useful in operational oceanography and seasonal forecasting

when error covariances poorly defined empirically

• Allows improved assimilation of salinity (and potentially

other tracer) data by reducing “Representivity” errors and

increasing Kalman gain

• Model bias should also be accounted for correctly in order to

correctly weight assimilated data.
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End of second Lecture


