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Adjoint Method (continued 2)

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk] 
subject to ξk+1 = Mkξk , k = 0, …, K-1

Control variable  ξ0 = u

Adjoint equation

 λK =        HK
T RK

-1 [HK ξK - yK]

 λk = Mk
Tλk+1 + Hk

T Rk
-1 [Hk ξk - yk]  k = K-1, …, 1

λ0 = M0
Tλ1      + H0

T R0
-1 [H0 ξ0 - y0]   +  [P0

b]-1 (ξ0 - x0
b)

∇u J  = λ0

Result of direct integration (ξk), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.
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Adjoint Method (continued 3)

Nonlinearities ?

J(ξ0)  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]

subject to ξk+1 = Mk(ξk) , k = 0, …, K-1

Control variable  ξ0 = u

Adjoint equation

 λK =        HK’T RK
-1 [HK(ξK) - yK]

 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk]  k = K-1, …, 1

λ0 = M0’Tλ1      + H0’T R0
-1 [H0(ξ0) - y0]   + [P0

b]-1 (x0
b - ξ0)

∇u J  = λ0

Not heuristic (it gives the exact gradient ∇uJ), and really used as described here.
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Adjoint Method (continued 4)

It works (Le Dimet, Courtier et al.) !

‘4D-Var’
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Same as before, but at the end of a 24-hr 4D-Var



8

Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



ECMWF, Results on one FASTEX case (1997)
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4D-Var is now used operationally at ECMWF, Météo-
France, Meteorological Office (UK), Canadian
Meteorological Service (together with an ensemble
assimilation system), Japan Meteorological Agency

Model error is ignored

Strong Constraint Variational Assimilation
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Weak constraint variational assimilation allows for errors in the assimilating
model

� Data
- Background estimate at time 0

  x0
b  =  x0

  + ζ0
b  E(ζ0

bζ0
bT) = P0

b

- Observations at times k = 0, …, K

   yk = Hkxk + εk E(εkεk
T) = Rk

 - Model

  xk+1 = Mkxk + ηk  E(ηkηk
T) = Qk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear
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Then objective function

(ξ0, ξ1, ..., ξK) → 
   

J(ξ0, ξ1, ..., ξK)

= (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)

    + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]

    + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]

 Can include nonlinear Mk and/or Hk.
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Dual Algorithm for Variational Assimilation (aka Physical Space Analysis
System, PSAS, pronounced ‘peezaz’, developed at Data Assimilation Office,
NASA, Greenbelt)

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m

where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises

µ  →  !(µ) = -(1/2) µT Λ µ + dTµ

Maximisation is performed in (dual of) observation space.
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Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x ≡ (x0
T, x1

T
 , …, xK

T)T

or, equivalently, but more conveniently, as

x ≡ (x0
T, η0

T
 , …, ηK-1

T)T

where, as before

ηk =  xk+1 - Mkxk   , k = 0, …, K-1

The background for x0 is x0
b, the background for ηk is 0. Complete background is

xb = (x0
bT, 0T

 , …,  0T)T

It is associated with error covariance matrix

 Pb = diag(P0
b, Q0 , …, QK-1)
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Dual Algorithm for Variational Assimilation (continuation 3)

For any state vector ξ = (ξ 0T, υ0
T

 , …, υK-1
T)T, the observation operator H

ξ  → Hξ = (u0
T, …, uK

T)T

is defined by the sequence of operations

u0 = H0ξ 0

then for k = 0, …, K-1

ξk+1 = Mkξk + υk
uk+1  = Hk+1 ξk+1

The observation error covariance matrix is equal to

 R = diag(R0, …,  RK)
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Dual Algorithm for Variational Assimilation (continuation 4)

Maximization of dual objective function

µ  →  !(µ) = -(1/2) µT Λ µ + dTµ

requires explicit repeated computations of its gradient

∇µ !  = - Λµ + d = - (HPbHT + R)µ + d

Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps

- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,

Set χΚ = 0
Then, for k = K-1, …, 0

         νk  = χk+1  +  Hk+1
T

 µk+1
χk  =  Mk

T
 νk

 Finally           λ0  = χ0  +  H0
T

 µ0

The output of this step, which includes a backward integration of the adjoint model, is the vector
(λ0

T, ν0
T

 , …, νK-1
T)T
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Dual Algorithm for Variational Assimilation (continuation 5)

- Step 2. Multiplication by Pb. This reduces to

ξ 0 = P0
b λ0

υk = Qkνk  ,  k = 0, …, K-1

- Step 3. Multiplication by H. Apply process defined above to vector (ξ 0T, υ0
T

 , …, υK-
1
T)T, thereby producing vector (u0

T, …, uK
T)T.

- Step 4. Add vector Rµ, i. e. compute
 ϕ0  = ξ0 + R0 µ0

ϕk  = υk-1 + Rk µk  ,  k = 1, …, K

- Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T , and add vector d = y - Hxb,
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Dual Algorithm for Variational Assimilation (continuation 6)

The model error covariance matrix Qk is present in the algorithm only in its direct
(not inverse form). Dual algorithm remains regular in the limit of vanishing model
error. Can be used for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong-
constraint variational assimilation (Louvel)



20

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999



Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999
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Dual Algorithm for Variational Assimilation (continuation)

Requires

 Explicit background (not much of a problem)

 Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, …)
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Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003
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Sequential Assimilation

Pros
     ‘Natural’, and well adapted to many practical situations

             Provides explicit estimate of estimation error

Cons
Carries information only forward in time (of no importance if one is

interested only in doing forecast; and smoother exists in principle)
            Optimality is possible only if errors are independent in time

Cost of computation of temporal evolution of estimation error very high,
and often prohibitive

Pb
k+1 = Mk Pa

k Mk
T + Qk
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Variational Assimilation

Pros
 Carries information both forward and backward in time (important for reassimilation of past
data).

Can take into account temporal statistical dependence (Järvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons
 Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes.

• Dual approach seems most promising. But still needs further development for
application in non exactly linear caes.

• Is ensemble variational assimilation possible ? Probably yes. But also needs
development.
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EU-funded project Assimilation of Envisat data (ASSET)
2003-2006. Coordinator W. Lahoz (University of Reading)

~ 10 groups from different European countries, using different models
of atmospheric chemistry and different assimilation algorithms, have
assimilated observations from instruments on board ENVISAT (mostly
observations of O3 and NOx atmospheric contents).

Several articles are in the publication process.
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Assimilation, which originated from the need of defining initial conditions for numerical
weather forecasts, has progressively extended to many diverse applications

• Oceanography
• Atmospheric chemistry (both troposphere and stratosphere)
• Oceanic biogeochemistry
• Ground hydrology
• Terrestrial biosphere and vegetation cover
• Glaciolology
• Planetary atmospheres (Mars, …)
• Reassimilation of past observations (mostly for climatological purposes, ECMWF,

NCEP/NCAR)
• Identification of source of tracers
• Parameter identification
• A priori evaluation of anticipated new instruments
• Definition of observing systems (Observing Systems Simulation Experiments)
• Validation of models
• Sensitivity studies (adjoints)
• …
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Assimilation is related to

• Estimation theory
• Probability theory
• Atmospheric and oceanic dynamics
• Atmospheric and oceanic predictability
• Instrumental physics
• Optimisation theory
• Control theory
• Algorithmics and computer science
• …
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References on assimilation of observations

Books

• Inverse Problems in general

• Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for
Industrial and Applied Mathematics, Philadelphia, USA, 342 pp., ISBN 0-89871-572-5 (can be
downloaded freely from address http://www.ipgp.jussieu.fr/~tarantola/).

• Filtering Theory

• Jazwinski, A. H., 1970, Stochastic Processes and Filtering Theory, Academic Press, New York, USA,
376 pp..

• Gelb, A., 1974, Applied optimal estimation, Cambridge University Press, Cambridge, UK, 374 pp..

• Anderson, B. D. O., and J. B. Moore, 1979, Optimal Filtering, Prentice Hall, Englewood Cliffs, New
Jersey, USA, 357 pp..
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• Meteorological and Oceanographical Applications

• Daley, R., 1991, Atmospheric Data Analysis, Cambridge University Press, Cambridge,
UK, 457 pp..

• Bennett, A. F., 1992, Inverse Methods in Physical Oceanography, Cambridge
University Press, Cambridge, UK, 346 pp..

• Wunsch, C., 1996, The Ocean Circulation as an Inverse Problem, Cambridge
University Press, Cambridge, UK, 442 pp..

• Rodgers, C. D., 2000, Inverse Methods for Atmospheric Sounding: Theory and
Practice, World Scientific Publishing Co. Ltd, London, UK, 238 pp..

• Kalnay, E., 2002, Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, Cambridge, UK, 341 pp..

• (Bennett, A. F., 2002, Inverse Modeling of the Ocean and Atmosphere, Cambridge
University Press, Cambridge, UK, 265 pp.).
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• Papers in Journals

• Ghil, M., and P. Malanotte-Rizzoli, 1991, Data assimilation in
meteorology and oceanography, Adv. in Geophys., 33, 141-266.

• Talagrand, O., 1997, Assimilation of Observations, an Introduction, J.
Meteor. Soc. Japan, 75 (1B, Special Issue Data Assimilation in
Meteorology and Oceanography: Theory and Practice), 191-209 (and
other papers in the same issue).


