Passive Remote Sounding of the Atmosphere in the Ultraviolet, Visible and Near-IR Spectral Regions:

GOME and SCIAMACHY from LEO, and the potential from GEO Lecture 1

John P. Burrows Department of the Physics and Chemistry of the Atmosphere Institute of Environmental Physics and Remote Sensing University of Bremen, Bremen, Germany

Partners in the SCIAMACHY Project

Links

- ESA Envisat Homepage:
- German SCIAMACHY Homepage:
- IUP/IFE Homepage: http://www.inp.physik.uni-bremen.de
- SCIAMACHY Operations Support Team:

http://atmos.af.op.dlr.de/projects/scops

Contents

- Introduction
- Motivation for Atmospheric Sounding
- GOME
- SCIAMACHY

Introduction

- Atmospheric Issues
- - Troposphere
- - Stratosphere
- - Mesosphere

Figure 1.5. Vertical profile of the temperature between the surface and 100 km altitude as as defined in the U.S. Standard Atmosphere (1976) and related atmosphere layers. Note that the tropopause level is represented for midlatitude conditions. Cumulonimbus clouds in the tropics extend to the tropical tropopause located near 18 km altitude.

Universität Bremen

Biogeochemical Cycles

Figure 1-1. Monthly mean background data (in situ and flask) for CCI, F. CCI, F. CCI, F. CCI, F. CCI, F. COF, from the ALE/GAGE/AGADE (Prinn et al. 1998) and NOAA/CMDL (Ekins et al., 1998) global networks.

Universität Bremen

Lecture 1: J. P. Burrows 1st ENVISAT DATA Assimilation Summer School 18-29th August 2003 ESA ESRIN Frascati Italy

and bromine.

Universität Bremen

Atmospheric Ozone

Universität Bremen 🦉 🎡 if

Tropospheric Chemistry

Stratosphere

Lecture 1: J. P. Burrows 1st ENVISAT DATA Assimilation Summer School 18-29th August 2003 ESA ESRIN Frascati Italy

Hall, Inc., Upper Saddle River, NJ).

Anthropogenic vs. Natural?

Anthropogenic

- Biomass Burning
- Pollution/Air Quality
- Acid Deposition
- Oxidising Capacity
- Surface Fluxes
 Greenhouse
 Gases

<u>Natural</u>

- Biomass Burning
- Lightning
- Volcanoes
- Oxidising Capacity
- Surface Fluxes
 - Emission
 - Deposition

COUPLING

Tropospheric Issues and Measurement Needs

•<u>Air Pollution:</u> quantification of air pollution and emissions from the PBL, their transport and their distribution in the remote free troposphere (O₃, CO, NO₂, H₂O, SO₂, HCHO, CH₄, NMHC, UV-A, UV-B, aerosol)

<u>Biomass Burning:</u> impact on the composition of the tropical troposphere and lower stratosphere

 $(O_3, CO, H_2O, NO_2, HCHO, SO_2, CH4, NMHC, aerosol, fire occurrence, aerosol)$

• G<u>reenhouse Gas Fluxes:</u> quantify the fluxes of GHG into the troposphere (O₃, CO₂, H₂O, CH₄, N₂O, clouds, aerosol)

=> the relevant tropospheric parameters have a large spatial and temporal variability and/or are covered by the variability of clouds!

Tropospheric Issues (2)

Process	Natural/ Anthrop.	Regions of Importance	Example(s)
Biomass Burning	N/A	Africa, Southeast Asia,	Production of CO, H ₂ CO, NO ₂ and
(BB)		Mediterranean	Aerosols over Africa resulting in
		South America	enhanced tropospheric O ₃
Air Quality (AQ),	А	Central Europe,	Production of SO ₂ , NO ₂ , CO and
Industrial		Middle East, East	aerosol over industrialised regions
Pollution		Asia, North and Middle	(fuel burning)
		America	
Lightning (LA)	N	Tropics, Europe	Production of NO ₂ by lightning over
			Africa and ist impact on upper
			tropospheric O ₃
Tropospheric	A	Europe, Africa, South	Outflow of enhanced tropospheric
ozone (TO)		Atlantic, Far East, US	ozone from Africa over the Atlantic
			as a result of pollution, biomass
			burning or lightning activity
Volcanism (VA)	Ν	Italy, Africa,	Observation of SO ₂ - and aersosol-
		South America	"clouds" from Nyamayagura/Africa
Global Warming	N vs. A	Europe, Africa	Aerosol direct/indirect effect
(GW), Kyoto Gas Emissions			CO ₂ and CH ₄ emission monitoring

Species/parameter	Environmental/S cientific Issue	Approximate lifetimes or cycling time	mixed ?
Stratospheric Ozone (O ₃)	TO, GW, SO, UTLS	Highly variable	No
Tropospheric Ozone (O ₃)	TO, GW, BB, AQ, LA, UTLS	Highly variable	Νο
Halogen oxides (ClO, BrO, OClO. etc.)	SO, TO	Highly variable	Νο
Nitrogen Dioxide (NO2)	TO, AD, BB, AQ, LA	Highly variable	No
Water vapour (H ₂ O)	TO, GW, BB, UTLS	Highly variable	No
Carbon monoxide (CO)	TO, BB	2 months, variable sources	No
Methane (CH₄)	TO, GW, SO, BB	10 years, variable sources	Yes
Nonmethane hydrocarbons	GW, TO, BB	Hours-weeks	No
(NMHC, here H₂CO)			
Chlorofluorcarbons (CFCs)	GW, SO	Many years	Yes
Chlorofluorhydrocarbons (HCFCs)	GW	Many years	Yes
Carbon dioxide (CO ₂)	GW	> 100 years, variable	Yes
		sources in the trop.	
Nitrous oxide (N ₂ O)	GW, SO	> 100 years, tracer	Yes
Sulphur dioxide (SO ₂)	AD, AQ, VA	Hours	No
Ammonia (NH ₃)	AD	Hours	No
Sulfuric Acid (H ₂ SO ₄)	VA, AD	Hours	No
Nitric Acid (HNO ₃)	AD	Hours	No
Aerosol	GW, BB, AQ, VA	Hours-weeks	No
Clouds	GW, TO, BB, LA	Hours to days	No
Polar stratospheric cloud	SO	Days to weeks	No
Surface spectral reflectance	GW, TO	Months	N/A.
Radiation Field (UV/SW/LW)	TO, SO, GW, BB	Highly variable	N/A.
Solar Variability	TO, GW, SO	Days to decades	N/A
Temperature	GW, SO, TO	Highly variable	No
Wind Fields	AD, TO, AQ, BB	Highly Variable	N/A
Fire Activity	BB, TO, AQ, GW	Highly Variable	N/A
Lightning Activity	TO, LA	Highly Variable	N/A

Universität Bremen

Policy Issues

- European convention on Long-Range Transboundary Air Pollution (LRTAP). The objective of the LRTAP is to reduce and control transboundary transfer of emission.
- Global Monitoring for Environment and Security (GMES) from Space (EU/ESA initiative)
- The Kyoto Protocol (UNFCCC). This aims at "the stabilisation of greenhouse gas concentrations ... " In a first phase, it aims to control emissions of gases having important global warming potentials (GWP): e.g. CO₂, CH₄, N₂O. The latest summary of the IPCC WG1 directly pointed on the necessity of to "sustain and expand the observational foundation for climate studies by providing accurate, long-term, consistent data including implementation of a strategy for integrated global observations" (IPCC 2001).
- Montreal Protocol: Monitoring of Ozone and impact on human being (UV)

Universität Bremen

Motivation for Atmospheric Sounding from Space

- Changing Atmospheric Composition Origin: Natural Processes (Volcanic) and Anthropogenic Activity (Pollution, Combustion of Fossil Fuel, Biomass/Biofuel Burning)
- Establish the global distribution of key constituents: trace gases, aerosol and clouds
- Climate change research
- Assessment
- Meteorology: Improvement of prediction
 Lecture 1: J. P. Burrows

Universität Bremen

Temporal and Spatial Scales

Spatial and Temporal Scales relevant for LEO and GEO

Universität Bremen

LEO and GEO: Targets and Scales

- LEO: Low Earth Orbit
 - Sun synchronous the same local time at the equator each orbit.
 - Sun asynchronous varying local time every orbit at the equator
 - Global Coverage
- GEO: Geostationary Earth Orbit

- the same disk of the earth in view i.e. 1/3 to 1/5 of the earth in view

- observations of all local times

SOME HISTORY

- 1920s Dobson and co-workers develop the Dobson instrument and technique to determine Ozone amount.
- 1957 International Geophysical Year deployment of
- 1957 Singer and Wentworth propose BUV technique
- 1960s Soviet make first attempts to measure O3 from space
- 1974 1979 BUV launched aboard NASA Nimbus 4
- 1975 –1990 Development of DOAS (Differential Optical Absorption Spectroscopy)
- 1979 1991 SBUV and TOMS launched on NASA Nimbus 7

Lecture 1: J. P. Burrows
1st ENVISAT DATA Assimilation Summer School

18-29th August 2003 ESA ESRIN Frascati Italy

- 1991-1994 TOMS on Russian Meteor
- 1996- TOMS on ADEOS
- 1996 -present EPTOMS

SCIAMACHY, GOME and GeoTROPE

(Progress towards the space based Numerical Environmental Prediction/Chemical Weather: space component)

03-1985	MAP (Measurement of Atmospheric Pollution) proposal idea to ESA for				
EURECA	no significant agency response - ignored,				
05-1985	Stratospheric Ozone hole observed by Farman et al (Nature).				
1985 – 1988 <i>Absorption</i> Germany to ESA	Development and submission of the SCIAMACHY(Scanning Imaging Spectrometer for atmospheric CHartograph Y), supported by the Polar Platform now ENVISAT.				
1988	Proposal of SCIA-mini for ERS-2				
1989	Descope of SCIA-mini to GOME (Global Ozone Monitoring Experiment)				
20-04-1995	Launch of ERS-2 with GOME				
12-1998	Proposal of GeoSCIA to ESA EEOM-1 – recommended for further study				
1997-2000	Selection of GOME-2 for the EUMETSAT/ESA operational series Metop				
01.2002	Proposal of <i>GeoTROPE(GeoSCIA+GeoFIS) Geostationary TROPospheric Explorer</i> to ESA for EEOM-2 recommended for further study -				
28 -02-2002	Launch of ENVISAT with SCIAMACHY on board.				

Universität Bremen

SCIAMACHY and GOME Measurement Geometry

- Typical spatial resolution in nadir: GOME-1 - 40x320 km² 1995 SCIAMACHY - 30x 60 km² 2002 GOME-2 - 40x80 km² 2005/6
- Vertical resolution in limb/occultation: 1.5-3 km
- Global coverage for limb and nadir

GOME SCIAMACHY Targets and Spectral Coverage

e

Level 0 and 1 Data Products for GOME and SCIAMACHY

- PLEASE NOTE THIS IS WHAT THE INSTRUMENT MEASURES!!!!!!
- Level 0 bits,

electrons produced by photons interacting with a diode
 photo-resistive/conductive, photo-voltaic effect.

- Level 1
 - Extra terrestrial Irradiance
 - Earthshine Top of the Atmosphere Radiance
 - GOME Nadir only
 - SCIAMACHY- alternate Limb and Nadir

- solar and lunar occultation Lecture T: J. P. Burrows

Universität Bremen

1st ENVISAT DATA Assimilation Summer School 18-29th August 2003 ESA ESRIN Frascati Italy

Where the Information comes from?

- Trace gas concentrations
 - Absorption cross sections
- Pressure

 \checkmark

- Line broadening of O₂, O₄ and CO₂
 absorption
- Rayleigh scattering
- Temperature
 - Line broadening of O₂, O₄ and CO₂
 absorption
 - Rayleigh scattering
 - Line strengths of CO₂ absorption
 - T dependent O₃ absorption in the UV
- ✓ Aerosol parameters
 - Aerosol scattering/absorption coefficients
 - **Tangent heights**
 - Pressure, temperature

Universität Bremen

1e-23 1e-24 240 300 400 500 600 700 800 1000 wavelength [nm] Lecture 1: J. P. Burrows

SCIAMACHY nadir spectrum

Universität Bremen

🖲 闕 ife

SCIAMACHY vs. GOME

	GOME	SCIAMACHY	
Measurement Modes			
Nadir	X	Х	
Limb		X	
Solar Occultation		X	
Lunar Occultation		X	
Calibration Modes			
Solar Calibration	Х	Х	
Lunar Calibration		X	
WLS Calibration		Х	
SLS Calibration	X	Х	
Targeted Parameters			
Total Column	O ₃ , O ₂ , O ₄ , BrO, NO ₂ ,	O ₃ , O ₂ , O ₄ , BrO, OclO, SO ₂ , H ₂ CO,	
	OCIO, SO ₂ , H_2CO , H_2O	NO ₂ , NO ₃ , N ₂ O, CO, CO ₂ , CH ₄ , H ₂ O	
Profiles	O ₃	O ₃ , O ₂ , O ₄ , BrO, OCIO, SO ₂ , H ₂ CO,	
		NO, NO ₂ , NO ₃ , N ₂ O, CO, CO ₂ , CH ₄ ,	
		H ₂ O	
Radiometric Accuracy			
Relative	< 1%	<1%	
Absolut	2 – 4 %	2 - 4%	
Spectral Range	240 – 780 nm	240 – 2380 nm	

fe

Current Scientific Level 2 Product Status (August 03)

	column	profile (1)		Misc.	
03			cloud frac		
NO2			cloud top		
BrO			AAI		
SO2		X	T/p profile		
H2CO		X	AOD		
OCIO			UV-index		
H2O			PSC/NLC		
N2O		X			
CO			X	= not applicable	
CH4				= not yet investigated	
CO2				= excellent to good results, partly affected by L1 qual.	
				= first results, limited quality due to L1/calibration	
			(1)	= affected by tangent heigth anomaly	
				= affected by ice channels 7 and 8	

ERS-2 with GOME on board

Launched 20th of April 1995 GOME has made 7 years of measurements

Schematic of GOME Optical Layout

GOME Scan Pattern from ERS-2

GOME: Solar Irradiance/Lunar Radiance Observations

Universität Bremen

Retrieval Principles

- DOAS Differential Optical Absorption
 Spectroscopy
- FURM FUll Retreival Method

DOAS (1)

Universität Bremen

DOAS (2)

First SCIAMACHY Nadir Spectral Fits

date: 20/06/2002 location: 67.6°N, 20°E SZA: 80.5° uncalibrated raw data (lv0) DOAS analysis using GOME settings

Richter et al., 07 / 2002

Universität Bremen

FURM

Universität Bremen

Summary of Lecture 1

- Atmospheric Issues: the need for global data have been discussed.
- Orbit chocies: the advantages and disadvantages of LEO and GEO have been explained.
- The history of SCIAMACHY, GOME and GeoSCIA/GeoTROPE is described.
- The GOME Instrument has been discussed.
- DOAS discussed and the slant column shown.

