

A big challenge that cuts across all aspects of data assimilation->

Characterization of errors:

- 1. Background errors (B): How to compute? How to model space/time distribution?
- 2. Bias (observations): How to compute? What independent data?
- 3. Model errors (e.g. bias): confront & evaluate models (e.g. climate models) with data assimilation techniques

1st Envisat Data Assimilation Summer School 18th - 29th August

Page 5

How to make best use of observations?

- 1. novel geophysical parameters (e.g. aerosol, $CIONO_2$, winds)
- 2. novel data types (e.g. limb radiances)
- 3. novel measurement geometries (limb sounders)
- synergy from measurement geometries (nadir/limb geometries, e.g. MIPAS/SCIAMACHY) -> extend domain of observations to UTLS & troposphere
- synergy from different instruments (e.g. AATSR/SCIAMACHY)

How to make best use of data assimilation?

- data cal-val (self-consistency; data monitoring) -> quality-controlled datasets for use by scientists, public,
- 2. confront & evaluate models -> assess climate models
- 3. analyses of key species (e.g. water vapour in the UTLS & stratosphere)
- 4. unobserved species (e.g. photochemical species via the model equations)
- 5. assess future space missions; evaluate current space missions -> protect investment

1st Envisat Data Assimilation Summer School 18th -29th August

Page 7

How to extend current model/assimilation systems?

- dynamics/chemistry coupling -> what is the best approach for NWP, research?
- 2. tropospheric chemistry -> pollution forecasting
- build toward an Earth System approach -> extend expertise in atmosphere/ocean to e.g. land and biosphere; include feedbacks

1st Envisat Data Assimilation Summer School 18th - 29th August

How to make best use of resources?

- Training -> use & familiarity with data assimilation tools & EO data: NATO ASI, 1st Envisat DA Summer School
- Collaboration -> workshops, visits, projects (coordination): knowledge & issues are world-wide
- 3. Links between met agencies & space agencies & the research community: extend & exchange knowledge
- 4. Links between operational & research communities & the wider community (public, government, commercial): best use of information

1st Envisat Data Assimilation Summer School 18th -29th August

Page 9

How to make information accessible?

- information management & dissemination -> need for standard formats; need for user flexibility; need for a user-friendly interface; proper documentation
- access beyond scientists: public, commercial users, governments,... -> "rules of the road"?; links between scientists, met agencies, space agencies & the commercial sector; commercial exploitation

1st Envisat Data Assimilation Summer School 18th - 29th August

Example of how some of these challenges are being met:

The ASSET (ASSimilation of Envisat daTa) consortium

- •U. Reading/Met Office: stratospheric water vapour assimilation(*)
- •Météo-France/CERFACS: Coupled dynamics/chemistry assimilation(*)
- •ECMWF: Limb radiances(*)
- •KNMI: Synergy from measurement geometries
- •UPMC: Assimilation of novel photochemical species
- BIRA-I ASB: stratospheric aerosol
- •U. Köln/U. Karlsruhe: Tropospheric chemistry/novel retrievals
- CNR.IFAC: Tomographic retrievals
- •NILU: Data management

ASSET is a FP5 project: http://darc.nerc.ac.uk/asset

Page 11

 1^{st} Envisat Data Assimilation Summer School 18^{th} – $29^{t\,h}$ August

Assimilation of water vapour in stratosphere

1st Envisat Data Assimilation Summer School 18th - 29th August

Water vapour:

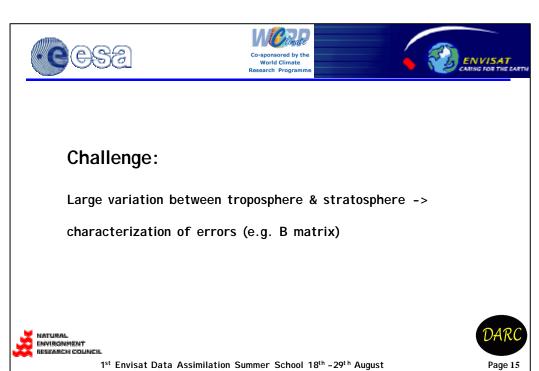
Radiation: Dominant GHG in atmosphere

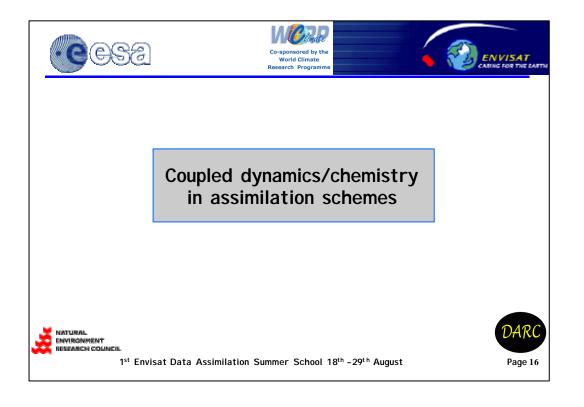
Dynamics: Diagnostic of atmospheric circulation

Chemistry: Source of OH; PSCs

See "SPARC Assessment on Upper Tropospheric & Stratospheric Water Vapour" (2000)

 1^{st} Envisat Data Assimilation Summer School 18^{th} - 29^{th} August


Assimilation of UT/S data from Envisat $(H_2O, as well as CH_4)$ will help address many of the recommendations in the SPARC assessment: validation, monitoring, more observations, continuity of measurements



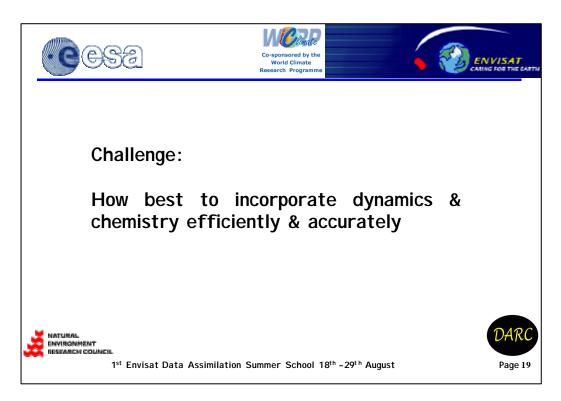
1st Envisat Data Assimilation Summer School 18th - 29th August

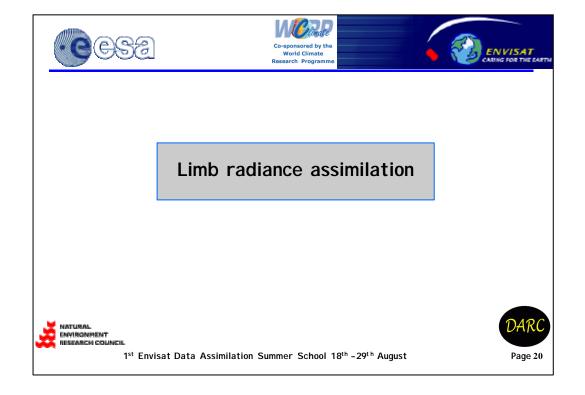
Approaches to assimilation:

- GCM: dynamics with "simple" chemistry (Cariolle)
 (U.Reading/Met Office, ECMWF)
- CTM: sophisticated photochemistry driven by off-line winds / temp (KNMI, UPMC, BIRA-IASB, U.Köln)
- Coupled GCM/CTM (time-step?): Get the best from above approaches (Météo-France/CERFACS)

1st Envisat Data Assimilation Summer School 18th -29th August

Page 17


Recent developments in assimilation for GCMs & CTMs feed into coupled dynamics / chemistry assimilation



1st Envisat Data Assimilation Summer School 18th - 29th August

Why?

Better to assimilate information nearer in form to data received by instrument (i.e. radiances instead of retrievals)

Overcomes shortcomings associated with retrievals:

- 1) need to include *a priori* information to make problem well-posed & fill in data gaps "contamination" of solution
- 2) common assumption that measurement errors uncorrelated (expediency) not strictly true for retrievals.

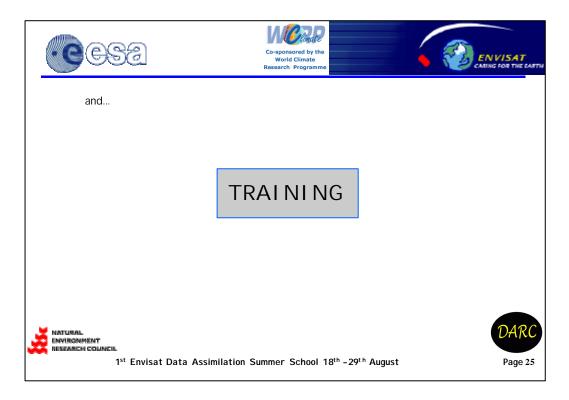
1st Envisat Data Assimilation Summer School 18th -29th August

Page 21

Some challenges:

- Limb geometry
- Computationally feasible forward model for IR limb radiances
- Data volumes
- Error characteristics

1st Envisat Data Assimilation Summer School 18th - 29th August


- Characterization of errors: cuts across data assimilation
- Operational use of research satellite data by NWP centres: ozone (already assimilated at ECMWF), stratospheric H₂O
- Assimilation of limb radiances by research/operational groups
- Chemical forecasting & tropospheric pollution forecasting
- Coupled dynamics/chemistry DA systems (e.g. GCM/CTM)
- Earth System approach to environmental & socio-economic issues
- Management/dissemination/exploitation of value-added information

1st Envisat Data Assimilation Summer School 18th - 29th August

