

Applying Artificial Intelligence Techniques to Earth Observation Data Quality Control Activities

Andrea Melchiorre, Ruben Columina, Fay Done, and Kevin Halsall

20 November 2019

Summary

- Telespazio VEGA UK have established a process to create AI models to detect anomalies in optical EO datasets
- The AI models have the potential to support EO QC engineers against a growing number of EO missions and data product volumes
- > A tool has been developed to capture the output of an EO QC engineer's analysis to support AI model development
- > An AI model has been developed to support the QC of ESA Landsat products for the IDEAS+/QA4EO Service

EO Data Quality Control

- Telespazio VEGA UK are prime contractors for ESA's IDEAS+ service responsible for performing operational and offline QC analyses on many ESA and Third Party EO data
- QC activities are a mixture of automated checks (applied to the whole dataset) coupled with a more detailed human observation of a smaller subset of the data
- Year on year, data volumes are increasing very hard for available resources to increase at the same pace
- The use of AI/Machine learning technics for classification is increasing exponentially
- QCOLT (Quality Control Optical Learning Tool) project was conceived to determine feasibility of using AI/Machine Learning techniques to support the QC of EO data
- Test application for the QC activity associated with the bulk re-processing over 600,000 ESA Landsat MSS products
- Overall objective was to determine whether the types of detailed QC analysis done by operators to a small data subset could be extended to entire datasets

semantic segmentation itional neural networks change detection remote-sensing data remote-sensing imagery machine learning support vector machines remote sensing convolutional neural network (cnn big data remote-sensing images extraction Incural-networks scene classification imagen mages recognition model representation **teatures** algor object detection framework lidar data convolutional neural-networks profiles sctire learning spectral-spatial classification sparse representation satellite images modis emote sensing image convolutional neural networks (cnns) hyperspectral image classification feature selection morphological profiles integration high-resolution images

Lei Ma et al. 2019

糸

Machine Learning

- At a high level development of an Machine Learning model has 5 steps
- Data Preparation step is the most effort intensive
- Data Preparation involves:
 - Performing a QC assessment on data products within an archive
 - Tagging those products exhibiting specific anomalies
 - Creating two training datasets consisting of:
 - Nominal data
 - Data containing the specific anomaly being investigated
- Most of this type of assessment is performed by a QC engineer as part of their normal activities

BUT assessments aren't typically captured in a way that AI experts can use to properly prepare the data

- Project developed the **QCOLT software** to support both QC engineers and AI experts:
 - QC engineer duty is to perform large elements of the Data Prepartion step for the AI experts
 - The Machine learning output reduces the resources needed to complete the QC over the full dataset

QCOLT Software

- Large **backend** database containing information and image data relating to all of the Landsat products under investigation
 - Product data (images)
 - Product Metadata
 - Product statistics
 - Quality reports from automated analyses outputs

Version: dev-pre-production				Q-COLT	Г				Logout
Search LANDSAT Products e.g. "LS1 MSS 1	975","LS2 ETM 200	0", "L <mark>S2 E</mark> TN	1 2000 2003"			Search		PRODUCTS PER PAGE	10 🗢
Shuffle for Inspection		Total Pro	oducts Selected: 1401	Amalfi Filter -	Anomaly Filter	 Probability Filter - 	Other Filters	s▼	
Product Name	≎ Satellite ≎	Instrument	Absolute Orbit		Product Type	û Date û	Path 🕆 Ro	w 👔 AMALFI Status	Actions
LS01_MSS_19760907T094129_19760907T094158	LS01	MSS	021028	RMTI	GTC	1976-09-07	0218 002	22 Passed	Inspection Show Details
LS01_MSS_19760911T100405_19760911T100434	LS01	MSS	021084	RMTI	GTC	1976-09-11	0222 003	22 Passed	Inspection Show Details
LS01_MSS_19751105T100023_19751105T100052	LS01	MSS	016747	RMTI	GEO	1975-11-05	0217 003	29 Passed	Inspection Show Details
LS01_MSS_19760523T080936_19760523T081006	LS01	MSS	019535	RMTI	GEO	1976-05-23	0201 00	15 Passed	Inspection Show Details
LS01_MSS_19760523T080956_19760523T081026	LS01	MSS	019535	RMTI	GEO	1976-05-23	0201 00	16 Passed	Inspection Show Details
LS01_MSS_19760523T081021_19760523T081052	LS01	MSS	019535	RMTI	GEO	1976-05-23	0201 00	17 Passed	Inspection Show Details
LS01_MSS_19760523T081046_19760523T081116	LS01	MSS	019535	RMTI	GEO	1976-05-23	0201 00	18 Passed	Inspection Show Details
LS01_MSS_19760523T081111_19760523T081141	LS01	MSS	019535	RMTI	GEO	1976-05-23	0201 00	19 Passed	Inspection Show Details
LS01_MSS_19760523T081136_19760523T081205	LS01	MSS	019535	RMTI	GEO	1976-0 <mark>5-2</mark> 3	0201 003	20 Passed	Inspection Show Details
LS01_MSS_19760523T081200_19760523T081230	LS01	MSS	019535	RMTI	GEO	1976-05-23	0201 002	21 Passed	Inspection Show Details
			« < 1 2	2 3	4 >	»			

QCOLT Software

- Customised **GUI** permitting:
 - visual inspection of the data
 - inspection of metadata
 - anomaly assignment
- During inspection the training dataset is built
- Once AI models implemented, results imported back into QCOLT

GROUP = L1_METADATA_FILE GROUP = METADATA_FILE_INFO ORIGIN = "Image courtesy of ESA" REQUEST_ID = "0008209170000_000000 ' LANDSAT_SCENE_ID = "LM32050401982260FUI00" ORIGINAL_FILENAME = "LM03_L1TP_205040_19820917_20190514_FUI" FILE_DATE = 2019-05-14T10:58:42Z STATION ID = "FUI" PROCESSING SOFTWARE_VERSION = "SLAP_03.08" DATA CATEGORY = "NOMINAL" END GROUP = METADATA_FILE_INFO GROUP = PRODUCT_METADATA DATA_TYPE = "L1T" ELEVATION_SOURCE = "GLS2000' OUTPUT FORMAT = "GEOTIFF" EPHEMERIS_TYPE = "RESTITUTED" SPACECRAFT_ID = "LANDSAT_3" SENSOR_ID = "MSS" WRS PATH = 205 WRS ROW = 040 DATE ACOUTRED 1082-00-17

米

6

AI Model & Anomaly Selection

- Key decisions to be made related to the selection of the type of AI model used by the team
 - Convolutional Neural Network selected
 - Similar to neuron connectivity in a human's visual cortex – popular amongst Deep Learning community for image classification
 - "Supervised" model type used can be trained to detect a particular anomaly type
- Anomalies selected: Scan Start Anomaly.

- Criteria:
 - Visible in the product image
 - Deterministic detection unfeasible

Model Refinement

- The model output is a 'soft classifier' score for each product assessed
 - Probability of a product having the anomaly rather than TRUE/FALSE
- Active Learning process used to improve and refine the models
- Example of results from model application (logarithmic scale) on 40'000 products
- Trained using only 25 anomalous products
- 0%-5% classified as 'No anomaly detected' / 'Negative'
- 95%-100% classified as 'Anomaly detected' / 'Positive'
- 5%-95% classified as 'Undecided'
- Undecided zone forms the basis of the Active Learning dataset
- Data is re-assessed & re-classified
- Model is re-trained and improved based on new input

Results

- 'Scan Start' Anomaly ٠
 - 39,001 Landsat-3 products analysed -
 - Higher than expected Positives detected -
 - Resulting from known issue prevalent towards end of mission •
 - 100 samples taken across each class visually detected -

	Observed	Positive	Negative
Predicted			
Positive		True positive (100)	False Positive (0)
Negative		False Negative (16)	True Negative (84)

- Model does not mix Scan Start anomaly with other missing data -
- Particular cases still undetected -
 - Could be improved through further training •

Histogram of Scores Applied by Scan Start Detector to Landsat-3 data.

Future Development

- Investigate potential to integrate machine learning activities into ongoing QC projects
- Expansion of techniques to include other instrument types (e.g. SAR)
- Exploration of alternative model types:
 - Unsupervised models have the potential to detect multiple anomalies with a single model, rather than having one model per anomaly
- Software tools
 - Activities to date performed on an in-house research basis
 - Software development will focus on tool integration in data processing and QC pipelines

Contacts

Andrea Melchiorre

EO Engineer Andrea.melchiorre@telespazio.com

Kevin Halsall

Project Manager

Kevin.halsall@telespazio.com

telespazio.com

THANK YOU FOR YOUR ATTENTION

telespazio.com

