

Korea Aerospace Research Institute 169-84, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Korea

Analysis on Refinement of On-orbit MTF Measurement using Edge Target

November 20, 2019

DaeSoon Park, HyunHo Kim, YouKyung Seo, JaeHeon Jeong, DooChun Seo, DongHan Lee

Korea Aerospace Research Institute (KARI)

Shared on JACIE 2018 & CEOS WGCV IVOS #31

- 1. [RD1] Mary Pagnutti, Slawomir Blonski, Michael Cramer, Dennis Helder, Kara Holekamp, Eija Honk avaara, and Robert Ryan, 2010, 'Targets, methods, and sites for assessing the in-flight spatial resol ution of electro-optical', *Can. J. Remote Sensing*, Vol 36, No 5, 583–601
- [RD2] Dennis Helder and Francoise Viallefont, 2012, 'A Frame for Geo/Spatial Quality', CEOS WGC V IVOS 24
- 3. [RD3] Françoise Viallefont-Robinet, Dennis Helder, Renaud Fraisse, Amy Newbury, Frans van den Bergh, DongHan Lee, and Sébastien Saunier, 2018, *Optics Express*, Vol 26, Issue 26, 33625-33648
- 4. [RD4] DaeSoon Park, HyunHo Kim, YouKyung Seo, JaeHeon Jeong, DooChun Seo, DongHan Lee, 2018, 'Analysis on Refinement of On-orbit MTF Estimation Edge Target', JACIE 2018
- 5. [RD5] DaeSoon Park, HyunHo Kim, YouKyung Seo, JaeHeon Jeong, DooChun Seo, DongHan Lee, 2019, 'MTF Measurement Algorithm Refining based on KOMPSAT-3 Image', CEOS WGCV IVOS 31

Figure. Processing Steps for Edge target to get ESF, LSF, MTF [RD2]

KARI methodology of MTF Estimation

- 1. (One of Purpose) Get the reasonable quantity of Spatial quality for remote sensing satellite in *Real conditions*.
- 2. Develop the Definition of the general Spatial quality Estimators; [RD1]
 - a. RER (Relative Edge Response) & Edge Response Slope
 - b. FWHM (Full Width at Half Maximum)
 - c. MTF curve, and MTF value at Nyquist frequency
- 3. Develop the Standard process to get RER, FWHM & MTF
 - a. Standard target from Artificial (Man-made) & Natural target [RD1]
 - 1 Edge, Line (Bar), Point, Periodic target
 - 2 Database for Artificial & Natural target
 - b. Conditions (limitations) for Target & Image data [RD1, 4, 5]
 - c. Reference MTF test data
 - d. <u>Standard Processing Step (algorithm) for Edge target [RD3, 4, 5]</u>
 - ① Several options according to the Conditions (limitations)
 - 2 For target; Edge, Line, Point, Periodic
 - 3 For Standard target & For Artificial & Natural target

KARI methodology of MTF Estimation (1/5)

- Check the status and health of the Edge target image data [RD2, 2.1] 3.
 - Straight line on Edge а.
 - ??? (TBD, D1)
 - Uniformity on Bright and Dark area b.
 - SNR > 50 (TBR, D2) (Helder, 2002)
 - DN difference between Bright and Dark С.
 - $\Delta DN > 50$ (TBR, D3) (Helder, 2002) (Depended on SNR)
 - Permitted Angle range between Edge and Along / Across direction d.
 - 0 ~ 30deg (TBR, D4) (Depended on Fitting method by No. of sample)
 - Number of Edge line e.
 - > 10~20 pixels (TBR, D5) (Depended on Fitting method by No. of sample)
 - Width of Bright and Dark area f.
 - > 5 pixels (TBR, D6)

Because of low SNR, it is impossible to calculate the RER, FWHM, MTF.

(3:d)

DN

Edge Spread Function(ESF)

Sub-pixel profile

KARI methodology of MTF Estimation (2/5)

- Select and Determine ROI of Edge on the Edge image data [RD2, 2.1] 4.
 - **Determine Along & Across direction** a.
 - b. Determine Bright and Dark side
- Detect the Edge line on ROI 5.
 - At every line, Find adjacent pixels with largest difference а.
 - Fit cubic polynomial (TBC, E1) to (more than) 4 pixels (TBC, E2) b. surrounding largest difference
 - Declare edge location as inflection point of cubic function (Red dot) с. (TBC, E3)
 - Linear fitting with all edge locations of lines (Green line) (Fit Err.) d.
 - Get the Edge line (Green line) e.
 - f. Calculate the Angle of Edge line (Θ ; Along/Across vs. Edge line)

10 20

Cal/Val & Data Quality Control Team

- 6. Get & Plot Edge Spread Function (ESF) with Pixel data
 - Divide 'the Relative distance of every pixel' by ' $\cos(\theta)$; Edge angle, Along/Across vs. Edge line' a.
 - b. (X-axis) Relative distance of every pixel from the Edge line on the each line by pixel unit
 - (Y-axis) DN value of each pixel (Red dot) C.
- Decide the Starting point of the Bright & Dark area (Because Bright & Dark area are not Flat~!) 7.
 - Inflection point on LSF for the Starting point (TBR, F1) a.
 - Fitting (Cubic Smoothing Spline; TBR, F2) with Pixel data Ι.
 - **Differential Fitted ESF to LSF** 11.
 - 2 more Differential LSF for the Inflection point III.
 - b. The width of Bright / Dark area; 1 pixel (TBR, F3)
 - Trim ESF with Pixel data with Bright / Dark area (Blue dot Line) C.

- 7 -

- 8. Calculate and Plot ESF by Fitting from the Trimmed ESF pixel data
 - a. Fitting by the next (according to the Asymmetric LSF) (TBD, B1);
 - I. Parametric (Fermi-Dirac)
 - II. Non-parametric (Cubic Smoothing Spline, Savitzky-Golay)
 - KARI: 'CSAPS (0.98)' in Matlab
 - b. Normalization by fitted ESF, and Plot
- 9. Calculate Relative Edge Response (RER) (by one pixel)
 - a. Differential ESF and get LSF ('8')
 - b. The Inflection point (Top) is the Center of RER (TBR, H1)
 - Because of Asymmetric LSF
 - c. Calculate RER by one pixel (Green line)
 - d. If Parametric fitted ESF,
 - The Center of RER is '0.5' on Normalized DN

- Calculate and Plot Line Spread Function (LSF) 10.
 - Differential ESF and get LSF ('8') a.
- Calculate Full Width at Half Maximum (FWHM) 11.
 - FWHM (50%) a.
 - 80%, 25% (if Parametric Fitting, and in Optional) b.
- Calculate and Plot MTF (Modulation Transfer Function) 12.
 - Calculate Nyquist frequency a.
 - FFT apply to LSF b.
 - Plot MTF С.
 - d. Get MTF value at Nyquist frequency (Red dot)

TBD, TBR, TBC on KARI's MTF Estimation

Ν	о.	ltem	Content	Link	TB.
	1	Reference target	Status of Reference target		TBD
А	2	Natural target	What is Requirements of Natural target?		TBR
	3	Satellite Resolution	(Loosely) Link to Satellite Resolution	D1	TBR
В	1	Asymmetric PSF & LSF	How to reflect and handle Asymmetric PSF & LSF	H1	TBD
С	1	RER, FWHM, MTF	What is the best Reasonable (Representative) Estimator?	H1	TBD
	1	Straight Line on Edge	Limitation of Straight line by One pixel	A3	TBD
	2	Uniformity on Bright & Dark area	Limitation of Uniformity on Bright and Dark area by SNR (> 50)		TBR
	3	DN Difference between Bright and Dark area	Limitation of DN Difference between Bright and Dark area by SNR (> 50)		TBR
D	4	Angle between Edge and Along / Across direction	Permitted Angle range between the Edge and Along / Across direction (0~30deg) (Depended on Fitting method by No. of sample)	G1	TBR
	5	Number of Pixel on Edge line	Limitation of Number of Pixel on Edge line (> 10~20 pixels) (Depended on Fitting method by No. of sample)	G1	TBR
	6	Width of Bright & Dark area	Width (pixel) of Bright and Dark area (> 5 pixels)		TBR
	1	Fitting Cubic polynomial	Fitting Cubic polynomial for Detecting the Edge line on ROI		TBC
Е	2	4 pixels for Edge detecting	4 pixels for Detecting the Edge line on ROI		TBC
	3	Edge location as Inflection point of Cubic function	Edge location as Inflection point of Cubic function for Detecting the Edge line on ROI		TBC
	1	Inflection point on LSF for Starting point	What is Starting point of Bright & Dark area		TBD
F	2	Fitting (Cubic Smoothing Spline) for 'F1'	Fitting method (Cubic Smoothing Spline) for Inflection point on LSF for Starting point, and Weight value of Cubic Smoothing Spline	F1	TBR
	3	Width of Bright / Dark area	Width of the Bright & Dark area from the Starting point (1 pixel)		TBR
G	1	Fitting method on ESF	What it the optimal fitting method on ESF?		TBD
Н	1	Inflection point as RER Center	What is Center of RER; Inflection point (Top) on LSF or Half DN	B1,C1	TBR
		Korea	Aerospace Research Institute (KARI) Cal/Val & Data Qu	ality Contro	ol Team

- 10 -

Analysis on Refinement of On-orbit MTF Measurement using Edge Target (TBD, TBR in Previous Table)

• at CEOS WGCV IVOS #30 – GeoSpatial W/G (March 27, 2018)

- DaeSoon Park, JaeHeon Jung, DooCheon Seo, YouKyung Seo, DongHan Lee
- 'Validation of MTF Measurement method by Edge Target' (Optimum angle versus sample of lines for slant-edge method)

N	0.	Item	Content	Link	TB.
	4	Angle between Edge and Along / Across direction	Permitted Angle range between the Edge and Along / Across direction (0~30deg) (Depended on Fitting method by No. of sample)	G1	TBR
D 5	5	Number of Pixel on Edge line	Limitation of Number of Pixel on Edge line (> 10~20 pixels) (Depended on Fitting method by No. of sample)	G1	TBR

SDPAR(Subpixel Distance Peak to Average Ratio)

• (D6) Width of Bright & Dark area

 Width (pixel) of Bright and Dark area on Edge target image (> 5 pixels)

• (F1) Inflection point on LSF for Starting point

Starting point of Bright & Dark area

• (F3) Edge location as Inflection point of Cubic function

Width of the Bright & Dark area from the Starting point (1 pixel)

• Inflection point (because Asymmetric PSF)

Peak points comes out by Laplacian operation(▽) of ESF

• Trimmed point

- Inflection point ± Trimmed width ('Zbra_width')
- Trimmed width (1 pixel, Now)
 - 'Zbra_width': Parameter in KARI MTF Code
 - Trimmed pixels from Inflection point (A)

Korea Aerospace Research Institute (KARI)

Cal/Val & Data Quality Control Team - 14 -

Edge Spread Function (csaps= 0.98)

80% = 0.972

FWHM = 1.816

25% = 3.696

Edge Detection (Across, 6.99 deg, Fit Err:1.1)

5 10 15

Pixel

Line Spread Function (Resolution: 0.05)

Pixel

10

20

25

e 0.5

-8 -6 -4 -2 0 2 4 6

A

Edge Spread Function (csaps= 0.98)

-4 -2 0 2 4 6 8

0.2 0.3 0.4 0.5

Normalized frequency

Pixel

MTE

RER = 0.360

SNR = 190.1

△DN = 8492

Nyquist = 07.94%

V(0.25) = 22.78%

A(0-0.5) = 36.65

A(0.25~0.5) = 6.61

0.6

0.8 Over. = 0.69%

Under. = 0.09%

-8 -6

0.1

0.6 pe

0.4

0.2

0.6

0.4

0.2

Edge Detection (Across, 6.99 deg, Fit Err:1.1)

0.5

• MTF vs. Trimmed width

– MTF value goes 'zero' with 'Zbra_width = 3'

• RER vs. Trimmed width

- RER value is inversely proportional to the trimmed width clearly.
- RER doesn't go 'zero' with 'Zbra_width = 3' (????)

- FWHM vs. Trimmed width
 - FWHM goes 'zero' with 'Zbra_width = 3'
 - FWHM shows a proportional dependency to Trimmed width

• MTF area(25%) is shrinking and tends to converge

- (D3) DN Difference between Bright and Dark area
 - Limitation of DN Difference between Bright and Dark area by SNR (> 50)
- (Oct.03, 2015 ~ Mar.16, 2017) Edge target at Baotou, Mongol, Salon (123 EA)

• (Oct.03, 2015 ~ Mar.16, 2017) Edge target at Baotou, Mongol, Salon (123 EA)

(D3, D6, F1, F3) FWHM vs. ΔDN with Zbra_width

'3'

• (Oct.03, 2015 ~ Mar.16, 2017) Edge target at Baotou, Mongol, Salon (123 EA)

- Normalized area is shrinking by Trimmed width
 - More stabilized value at Nyquist Freq.

- Trimmed(Zbra_width) width: 1 → '3' (from Inflection point)
 - RER dependency for ΔDN appears
 - But, Need to decide the recommended ΔDN value
 - FWHM converges
 - MTF curve and area converges

- 'Edge target at Baotou, Mongol, Salon (212 EA) (KOMPSAT-3A)
- Getting Lower Spatial quality by 'Zbra_width' = '3'
 - But, More Reliable~!

Iotal	(212EA)									
Zbra_width			Acr	oss			Alo	ong		
		Avg	Std.	Std/Avg	RMSE/Avg	Avg	Std.	Std/Avg	RMSE/Avg	
1	RER	0.3837	0.0209	0.0544	0.0409	0.3858	0.0120	0.0312	0.0298	
	FWHM	1.7545	0.0823	0.0469	0.0406	1.9730	0.0845	0.0428	0.0414	
	MTF	9.7302	1.0060	0.1034	0.0965	7.2493	1.1242	0.1551	0.1513	
Zbra_width			Acr	OSS		Along				
		Avg	Std.	Std/Avg	RMSE/Avg	Avg	Std.	Std/Avg	RMSE/Avg	
3	RER	0.3747	0.0203	0.0542	0.0412	0.3758	0.0121	0.0321	0.0311	
	FWHM	1.7709	0.0824	0.0465	0.0410	1.9865	0.0840	0.0423	0.0410	
	MTF	9.1192	0.9231	0.1012	0.0966	7.0840	1.0941	0.1544	0.1482	
	RER	-0.0090	-0.0006	-0.0002	0.0003	-0.0100	0.0001	0.0009	0.0013	
Diff.	FWHM	0.0164	0.0001	-0.0004	0.0004	0.0135	-0.0005	-0.0005	-0.0004	
	MTF	-0.6110	-0.0829	-0.0022	0.0001	-0.1653	-0.0301	-0.0007	-0.0031	

- (H1) Inflection point as RER Center (because Asymmetric PSF)
 - What is Center of RER; Inflection point (Top) on LSF or Half DN
- Case 1 ('C1', Now)
 - First order fitting using samples within <u>slope at Inflection point</u> ±0.5 pixel
- Case 2 ('C2')
 - Third order fitting using samples within <u>slope at Inflection point</u> ±0.5 pixel
 RER = | ESF(+0.5) ESF(-0.5) |

• Case 3 ('C2')

– First order fitting using samples within <u>half DN point</u> ± 0.5 pixel

- Case 4 ('C3')
 - Third order fitting using samples within <u>half DN point</u> ± 0.5 pixel

• Slope of Inflection point(1st) is promising for sensitivity

		Acr	OSS		Along				
RER Method	Avg	Std.	Std./Avg	RMSE/Avg	Avg	Std.	Std./Avg	RMSE/Avg	
(C1) Inflection point (1st)	0.3736	0.0211	0.0564	<u>0.0426</u>	0.3736	0.0124	0.03319	<u>0.0299</u>	
(C2) Inflection point (3rd)	0.3714	0.0206	0.0554	0.0429	0.3657	0.0122	0.03342	0.0305	
(C3) Half DN (1st)	0.3606	0.0197	0.0547	0.0442	0.3623	0.0116	0.03208	0.0308	
(C4) Half DN (3rd)	0.3606	0.0198	0.0548	0.0442	0.3622	0.0116	0.03209	0.0308	

Korea Aerospace Research Institute (KARI)

Cal/Val & Data Quality Control Team

0.45

0.3

0.45

0.35

0.3

0

0.1

0.2

0.3

04

0.5

Normalized Date

0.6

07

0.8

0.9

RER

법 0.35

(H1) Sinusoidal Fitting of RER (212 Edges)

- Inflection Slope(1st fit) C1
 - Estimated Period: 2.438
 - Std.Dev: 0.0230
- Half DN(1st fit) C3
 - Estimated Period: 2.471
 - Std.Dev: 0.0227

RMSE: 0.0154

2017년 7월

0.8

07

0.9

2018년 1월

RMSE: 0.0158

2 E R

0.35

0.3

0.1

0.2

- Yearly Cycle
- Aging factor

< For C1 > a = 0.0184 ω = 0.4205 θ = -2.200 b = -0.0213 c = 0.3840 Aging : -0.0104/year

Korea Aerospace Research Institute (KARI)

04

0.5

Normalized Date

0.6

0.3

(B1) Asymmetric PSF & LSF

 How to reflect and handle Asymmetric PSF & LSF

• Flag-BD :

B

D

Satellite Moving Direction

• FWHM(25%)-R

Korea Aerospace Research Institute (KARI)

Pixel

Cal/Val & Data Quality Control Team - 29 -

Pixel

(B1) Asymmetric RER Analysis

•	Because RER use
	half of the center
	part.

		Acr	oss		Along				
RER Parameter	Avg	Std.	Std/Avg	RMSE/Avg	Avg	Std.	Std/Avg	RMSE/Avg	
RER-L-1(BD)	<u>0.3668</u>	0.0232	0.0632	0.0487	0.3635	0.0131	0.0360	0.0492	
RER-L-0(DB)	0.3623	0.0213	0.0589	0.0482	0.3651	0.0149	0.0408	0.0478	
RER-R-1(BD)	<u>0.3652</u>	0.0223	0.0612	0.0469	0.3661	0.0134	0.0367	0.0468	
RER-R-0(DB)	0.3619	0.0207	0.0571	0.0463	0.3668	0.0154	0.0420	0.0457	

Korea Aerospace Research Institute (KARI)

Cal/Val & Data Quality Control Team - 30 -

(B1) Asymmetric FWHM Analysis

Along Across 1.6 1.8 FWHM-L-1 FWHM-L-1 1.4 1.6 FWHM-L-0 FWHM-L-0 . FWHM-R-1 FWHM-R-1 FWHM-R-0 FWHM-R-0 1.2 14 FWHM FWHM 8(0 # 0.6 0.4 0.6 2018년 1월 2016년 1월 2016년 7월 2017년 1월 2017년 7월 2018년 1월 2016년 1월 2016년 7월 2017년 1월 2017년 7월 F١ Date Date 1.6 1.8 R . 2! 1.4 1.6 1.2 FWHM FWHM 0.8 0.6 0.4 0.6 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Normalized value Normalized value

FWHM shows a difference between 'R' and 'L'.

	FWHM		Acr	oss		Along				
		Avg	Std.	Std/Avg	RMSE/Avg	Avg	Std.	Std/Avg	RMSE/Avg	
	FWHM-L-1(BD)	0.9382	0.0826	0.0880	0.0867	0.8682	0.0763	0.0878	0.0937	
	FWHM-L-0(DB)	0.9359	0.0935	0.0999	0.0869	0.8714	0.0784	0.0900	0.0934	
	FWHM-R-1(BD)	0.8785	0.0832	0.0948	0.0926	1.1399	0.0741	0.0650	0.0714	
	FWHM-R-0(DB)	0.8751	0.0763	0.0872	0.0930	1.1605	0.0907	0.0781	0.0701	

Korea Aerospace Research Institute (KARI)

Cal/Val & Data Quality Control Team

FWHM(25%) shows a difference between 'R' and 'L'.

		Acr	oss		Along				
FWHIVI(25%)	Avg	Std.	Std/Avg	RMSE/Avg	Avg	Std.	Std/Avg	RMSE/Avg	
FWHM-L-1(BD)	1.5887	0.1336	0.0841	0.0737	1.3254	0.1292	0.0974	0.0884	
FWHM-L-0(DB)	1.5917	0.1711	0.1075	0.0736	1.3088	0.0901	0.0688	0.0895	
FWHM-R-1(BD)	1.9209	0.2097	0.1092	0.0610	1.9223	0.0901	0.0469	0.0609	
FWHM-R-0(DB)	1.9791	0.1435	0.0725	0.0592	1.9309	0.1391	0.0721	0.0607	

Korea Aerospace Research Institute (KARI)

Cal/Val & Data Quality Control Team

• MTF, FWHM converge versus number of line, but RER

 Dependency is shown versus even/odd under 20 lines

Edge Detection (Across, 10.81 deg, Fit Err:4.0)

- RER have dependency on number of lines
 - For same edge image
 - It's affected by adding new line

- Method 2 : Polynomial + Noise Robust + least absolute residual method.
- Method 3 : Polynomial fitting 3rd

K2		Fit Error		RER			
κ5	avg.	std.	std./avg.	avg.	std.	std./avg.	
Method 1	<u>2.02</u>	1.9133	0.949	0.3719	0.0188	0.0505	
Method 2	6.17	2.0169	0.327	0.3730	0.0190	0.0510	
Method 3	4.41	1.7681	0.401	0.3731	0.0189	0.0505	

K2 V		Fit Error		RER			
K3A	avg.	std.	std./avg.	avg.	std.	std./avg.	
Method 1	<u>3.12</u>	3.1498	1.009	0.3651	0.0304	0.0834	
Method 2	6.75	18.4195	2.729	0.3662	0.0305	0.0832	
Method 3	4.89	2.9673	0.607	0.3664	0.0303	0.0828	

- First order fitting(Current)
 - Using samples within slope at Inflection point ±0.5 pixel

- Robust on adding new line that status of surface is bad
- Pseudo instant slope at 0
 - Input data fitting : Cubic Smoothing Spline(0.98)
 - Fit range : ±1 pixel
 - Fit method : polynomial 3rd
 - Resolution : 0.00001
 - slope at 0 ± 0.000005

— : Proposed method

• Even/Odd dependency is gone, but still remain little fluctuation

K 2		Across		Along				
K3	avg.	std.	std./avg.	avg.	std.	std./avg.		
Current	0.3736	0.002527	0.0068	0.3754	0.001841	0.0049		
Proposed	0.3846	0.001324	0.0034	0.3857	0.000912	0.0024		

TBD, TBR, TBC on KARI's MTF Estimation

Ν	0.	ltem	Content	Link	TB.
	1	Reference target	Status of Reference target		TBD
А	2	Natural target	What is Requirements of Natural target?		TBR
	3	Satellite Resolution	(Loosely) Link to Satellite Resolution	D1	TBR
В	1	Asymmetric PSF & LSF	How to reflect and handle Asymmetric PSF & LSF	H1	TBD
С	1	RER, FWHM, MTF	What is the best Reasonable (Representative) Estimator?	H1	TBD
	1	Straight Line on Edge	Limitation of Straight line by One pixel	A3	TBD
	2	Uniformity on Bright & Dark area	Limitation of Uniformity on Bright and Dark area by SNR (> 50)		TBR
	3	DN Difference between Bright and Dark area	Limitation of DN Difference between Bright and Dark area by SNR (> 50)		TBR
D	4	Angle between Edge and Along / Across direction	Permitted Angle range between the Edge and Along / Across direction (0~30deg) (Depended on Fitting method by No. of sample)	G1	TBR
	5	Number of Pixel on Edge line	Limitation of Number of Pixel on Edge line (> 10~20 pixels) (Depended on Fitting method by No. of sample)	G1	TBR
	6	Width of Bright & Dark area	Width (pixel) of Bright and Dark area (> 5 pixels)		TBR
	1	Fitting Cubic polynomial	Fitting Cubic polynomial for Detecting the Edge line on ROI		TBC
Е	2	4 pixels for Edge detecting	4 pixels for Detecting the Edge line on ROI		TBC
	3	Edge location as Inflection point of Cubic function	Edge location as Inflection point of Cubic function for Detecting the Edge line on ROI		TBC
	1	Inflection point on LSF for Starting point	What is Starting point of Bright & Dark area		TBD
F	2	Fitting (Cubic Smoothing Spline) for 'F1'	Fitting method (Cubic Smoothing Spline) for Inflection point on LSF for Starting point, and Weight value of Cubic Smoothing Spline	F1	TBR
	3	Next Width of Bright / Dark area	Width of the Bright & Dark area from the Starting point (1 pixel)		TBR
G	1	Fitting method on ESF	What it the optimal fitting method on ESF?		TBD
Н	1	Inflection point as RER Center	What is Center of RER; Inflection point (Top) on LSF or Half DN	B1,C1	TBR
		Korea	Aerospace Research Institute (KARI) Cal/Val & Data Qu	ality Contro	ol Team

- 39 -

Next Work

- Setting up constraints of edge samples
- Relationship among spatial parameter
- Tracking odd results as below

- Trimmed width('Zbra_width') (1 \rightarrow 3) changed for more reliable
 - But, RER, FWHM & MTF: go Down
 - (D6) Width of Bright & Dark area
 - (F1) Inflection point on LSF for Starting point
 - (F3) Edge location as Inflection point of Cubic function
- Dependency (RER & FWHM vs. ΔDN) may Appear
 - (D3) DN Difference between Bright and Dark area
 - (D3) But, Need to decide the recommended Δ DN value
- 'Inflection point of RER Center' gets Better than 'Normalized Half DN'
 - (H1) Inflection point of RER Center
- (B1) Asymmetric PSF & LSF
- (Next Job) (G1) Fitting method on ESF
 - What it the optimal fitting method on ESF?
- CEOS WGCV IVOS GeoSpatial W/G