planet.

Absolute calibration and validation of Skysat constellation

Adrian Gonzalez - CalVal team - Planet VH Roda November 2019

Monte Fitz Roy, Patagonia – March 19, 2018

PLANET'S CONSTELLATION

5 RapidEye Satellites 130+

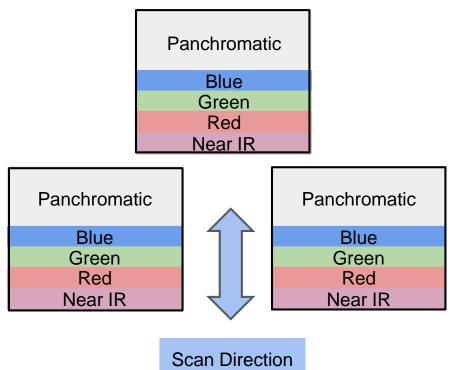
Dove Satellites PlanetScope


p

Flock	Dove-Classic (PS)	RapidEye	SkySat	Dove-R (PS)
Sensor Type	Four-band frame imager with a split- frame NIR filter	Multispectral push- broom	Multispectral / Panchromatic push- frame	Four-stripe push- frame imager
Spectral Bands	Blue: 455 - 515 nm Green: 500 - 590 nm Red: 590 - 670 nm NIR: 780 - 860 nm	Blue: 440 - 510 nm Green: 520 - 590 nm Red: 630 - 685 nm Red Edge: 690-730 nm NIR: 760 - 850 nm	Blue: 450 - 515 nm Green: 515 - 595 nm Red: 605 - 695 nm NIR: 740 - 900 nm PAN: 450 - 900 nm	Blue: 490 nm Green: 565 nm Red: 665 nm NIR: 865 nm
Orbit	SSO	SSO	SSO	SSO
GSD	~3.0 m	~6.5 m	~1.0 m (~0.8 pan)	~3.0 m
Frame Size / Swath Width	~ 24.6 km x 16.4 km	77 km	~ 3.2 km x 1.4 km (single camera)	~ 26 km
Crossing Time	9:30 - 11:30 am	11:00 am	10:30 - 13:00	9:30 - 11:30

SkySats at a Glance

- SkyBox Founded in 2009 by 4 Stanford grad students
- Raised \$110M over 3 financing rounds from local VC's
- Google Acquisition July 2014
- Planet Acquisition May 2017
- 15 satellites launched, all collecting imagery daily, operating 24x7 from San Francisco and Berlin



*SkySat-C Class

Pushframe Imaging

Pushframe Architecture

- Collect short exposure (400 19000 us) overlapping images
- Use image registration & reconstruction to generate final full color imagery
- Improve both SNR and ground sample distance (GSD) with superresolution (pseudo tdi)
- Compress and transmit to the ground
 - JPEG 2000 compression on board (potentially lossless)

SS-C3 First Light - Rome, Italy on September 23, 2016

+Vicarious Calibration

SkySat doesn't have onboard equipment to support calibration activities.

Uses ground measurements on homogeneous sites while a satellites flies over the site and captures an image.

Atmospheric and ground properties are measured to simulate the at sensor radiance on site.

- RadCalNet is a network of four robotic reference stations
- <u>https://www.radcalnet.org</u>
- Freely available measurements on 4 homogeneous sites
- Measurements every 30 minutes between 9:00 and 15:00 (local)
- Spectral coverage between 400 and 2500nm
 - o (Baoutou 400 1000nm)

Railroad Valley

Homogeneous salt flat site

Size 1 km x 1 km

Long heritage for vicarious calibration purposes

RadCalNet Sites

La Crau

Homogeneous dry grassland site in southern France

Spectra represent a disk of 30 m diameter

Gobabeb

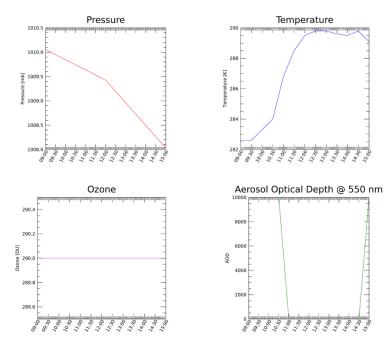
Homogeneous desert site in Namibia

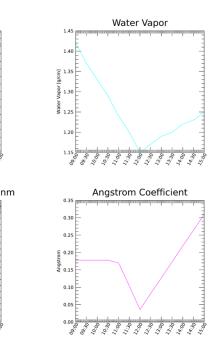
Data since 2017

Spectra represent a disk of 30 m diameter

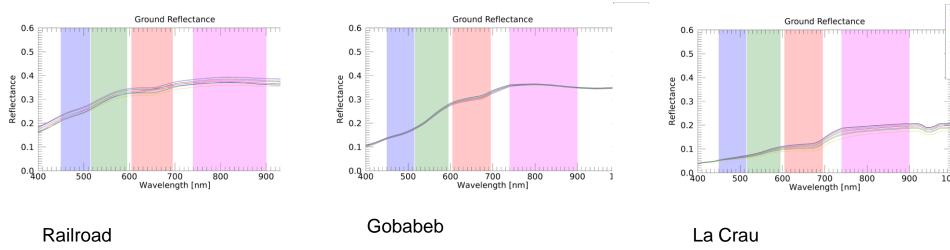
RadCalNet Sites

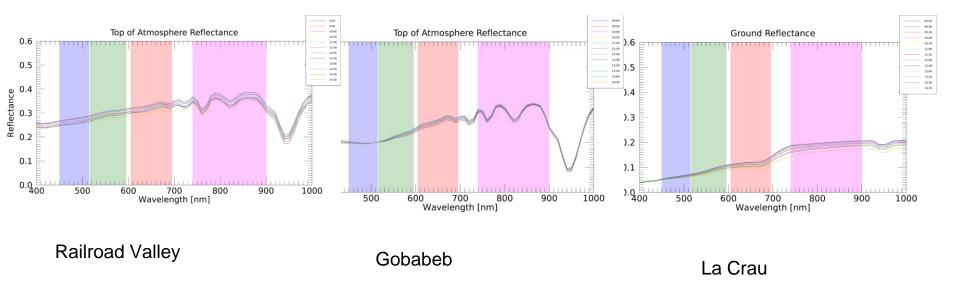
Baotou


Artificial gravel target in China


Chessboard pattern with three different Shades (2 * white, grey and black)

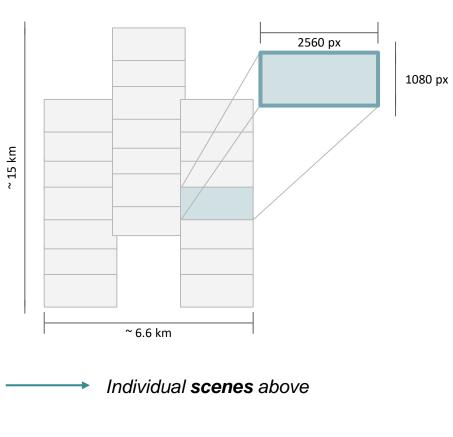
Radcalnet spectra represent the grey area


+ Atmospheric Information


- Air pressure [mb]
- Temperature [K]
- Water Vapor [g/cm^3]
- Ozone [DU]
- Aerosol Optical Depth @550 nm
- Angstrom coefficient

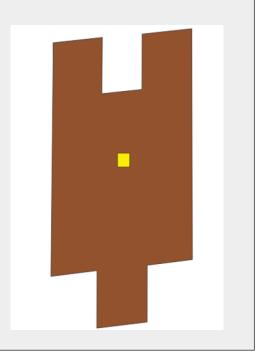
In 30 minute intervals between 9:00 am and 3 pm (13 measurements daily) Ground Reflectance

Surface Reflectance together with atmospheric information is used in MODTRAN 5 to model top of atmosphere reflectance using a standardized RADCALNET procedure


Top of Atmosphere Reflectance

Three different brightness levels allow line fits between Satellite and Ground Data This dataset is used for absolute vicarious calibration!!!

SkySat Cameras


Camera Attributes				
Attribute	Value			
Image Configurations	Multispectral Sensor (Blue, Green, Red, NIR)			
	Panchromatic Sensor			
Sensor Type	CMOS Frame Camera with Panchromatic and Multispectral halves			
Spectral Bands	Blue: 450 - 515 nm Green: 515 - 595 nm Red: 605 - 695 nm NIR: 740 - 900 nm Pan: 450 - 900 nm			
Product Framing	SkySat Satellites have three cameras per satellite, which capture overlapping strips. Each of these strips contain overlapping scenes. One scene is approximately 2560 x 1080 pixels. (see right graphic)			

Site and location

Tasking Railroad valley

Tasking

+

Planet Procedure for SkySat

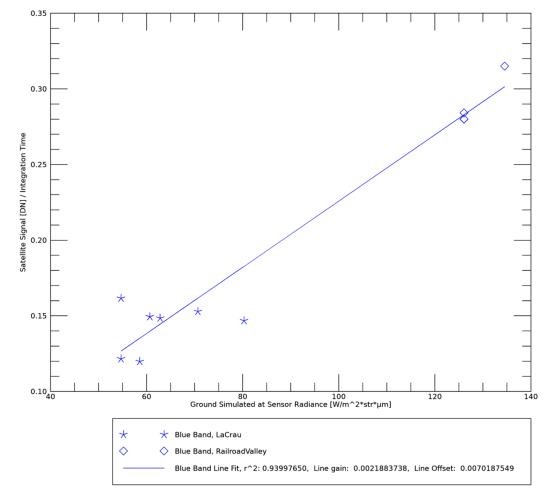
All RadCalNet info is stored in the cloud

Code developed to:

- search the archive for crossover collects (within 15 minutes of RadCalNet datapoint)
- Orthorectify frames
- Subset frames to the actual subset of the RadCalNet data
- Report creation for each individual crossover for all sites

+

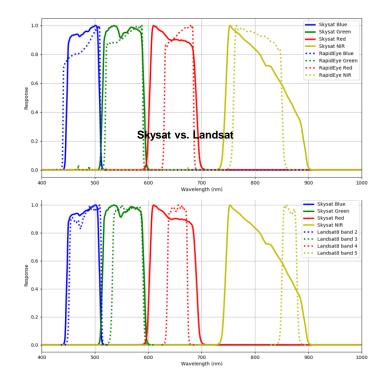
Planet Procedure


Code developed to analyze the results

- Previous retrieved report as input
- Plots per Sat/Band, fits between image DN (corrected by integration time) and reference
- Detects outliers
- Visualizes other analytics like error/look angle dependency, time trends, ...
- Calculates gains and offsets to transfer DN into Radiance
- Creates per file and sat/band reports

Results

- Fitted calibration lines for each spacecraft and band,
- Including r^2 and line fit coefficients
- Ideally these plots contain points from all three radcalnet sites
- Recurrent procedure, each time more radcalnet reference points are used

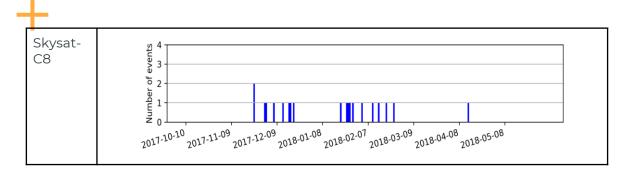

planet.

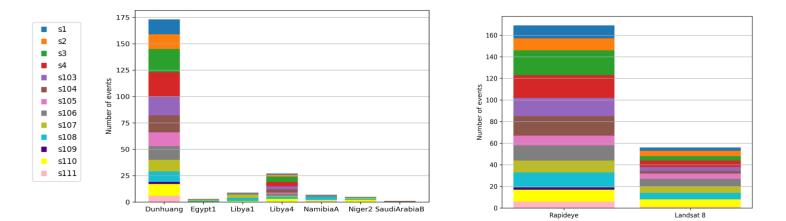
Validation of Skysat constellation

Monte Fitz Roy, Patagonia – March 19, 2018

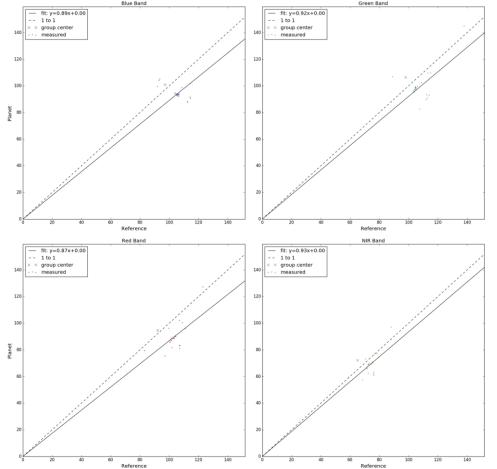
Crossovers with RapidEye and Landsat

- Crossover must occur within a characterized calibration site.
- Maximum time delta of 2 hours between crossover images.
- Maximum 20 degree view angle of any satellite.
- Maximum of 20% of pixels saturated in any one band for any image.
- Maximum of 20% clouds in for any image.
- All saturated and cloud pixels must be masked.


Calibration sites for Crossovers



Name	Lat, Lon	Description	
Dunhuang	40 / 94	Desert (Gobi), flat, dry, overall homogeneous, no vegetation. Possibly affected by atmospheric aerosol due to sandstorms and dust.	
Egypt 1	27/26	Desert, flat, dry, large, patchy across larger areas.	
Libya4	29 / 23	Desert (Sahara), flat, dry, large, dunes at multiple scales, but overall homogeneous, no vegetation.	
Libya1	25 / 13	Desert (Sahara), flat, dry, large, dunes at multiple scales, but overall homogeneous, no vegetation.	
Niger 2	21 / 11	Desert (Sahara), flat, dry, large, dunes at multiple scales, but overall homogeneous, no vegetation.	
Namibia	-16 / 12	Desert, flat, dry, large, somewhat homogeneous, no vegetation.	
Saudi Arabia	29 / 45	Desert, flat, dry, dune patterns at several scales, but homogeneous when averaged over larger areas, no vegetation.	


Crossover criteria and example

Crossovers results

2018-04-07 through 2018-04-16: {{s104} from Skysat} vs {autocrossover ({RE-3, RE-4} from RapidEye)}: ransac/ols (fto)
Blue Band
Green Band

SkySat	S104		
Band	Gradient of fit	Uncertainty (%)	
Blue	0.89	10.13	
Green	0.92	9.74	
Red	0.87	7.17	
NIR	0.93	7.60	

Conclusions

- Developed and defined clear method to calibrate and validate Skysat constellation
- All SkySat satellites and bands are calibrated to an uncertainty of 10% or better
- Add the Brookings cal site once 2019 data becomes available
- Combine this method with Cross Validation to RapidEye, Landsat8 and Sentinel2
- Periodically enhance samples size with new RadCalNet data

Thanks for your attention!

Questions?

Offline questions: adrian.gonzalez@planet.com

London Array Wind Farm, United Kingdom – April 17, 2016