

A survey of in-flight radiometric calibration methods and their applicability to Nanosatellites

Rosario Ruiloba (Agenium Space), Emmanuel Hillairet (Geo4I)

Outlines :

Presentation of the companies Characteristics of some EO VHR sensors (LargeSat & CubeSat) The radiometric model Characterization of : - dark signal - inter-detector gain - instrument noise - absolute radiometric gain

Some clues for Radiometric Calibration of CubeSats

VH RODA Workshop 2019, Frascati

Partnership: Image quality & Calibration

2

.

.

Agenium Space is part of Agenium Group, a French SME created in 2003

FY2019

AGENIUM Space Core Business: Expertise in EO domain

Image **Processing**

- Geometry, radiometry, atmospheric corrections, straylight, image quality simulation, information extraction
- Ground Processing
 Development

Deep learning

- General-purpose methodology applied to EO issues
- Ad-hoc comprehensive solutions tailored for specific user needs

Flight **dynamics**

- Extrapolation and orbit restitution, positioning and station-keeping, SCAO
- Expertise shared with AGENIUM group

This presentation is confidential and should not be reproduced without the written permission of AGENIUM Space

Founded in 2014, Geo4i is a French SME specialized in the processing and operating of geospatial information in the fields of Defense, Security and Safety.

SPACE IMAGERY AND VIDEO PROVIDER

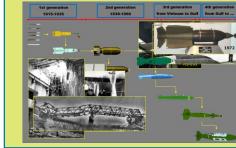
- Optical Multispectral / Radar
- Video


5

- 3D products
- Image Quality assessment

SOFTWARE DEVELOPMENT

- Images exploitation and analysis
- Automated processing
- Target Identification
- Dedicated tools


PRODUCTION

- Space Image analysis
- Multi-Source geolocated data analysis
- Value added product generation from radar and multispectral imagery

TRAINING & CONSULTING

- Data Management and open source
- Remote sensing knowledge for Geo-Intelligence
- IMINT Fundamentals
- Military equipment identification

AG Space & Geo4i: User Ground Segment Definition & Development

Image Quality **Expertise**

- Long experience in EO mission
- Involved in all the mission steps:
- Sensor and IQ requirements,
- User ground segment definition (ATBDs for L0, L1a,b,c)
- Preparation and participation to in flight commissioning (Calibration, Validation, optimization of algorithms)
- Mission performance control

Software Development & Optimization

- Experienced development engineers
- Operational image processing software development
- SW products for vectorization/portability

Deep Learning Use & Expertise

Software development for Image analysis and target identification

Expertise in:

- On board processing,
- Object detection and identification,
- Land cover/land use
- Change and anomalies detection,

AGENIUM

• 3D reconstruction

• ...

This presentation is confidential and should not be reproduced without the written permission of AGENIUM Space

Team experience in Image Quality & Ground Segment

Activities	IQ Expertise	Software Architecture	Software Development	Project Management
Sentinel 2 Pre-Studies and ATBDs authoring (CNES)	x		X ²	
S2 GPP and IPF (ESTEC and ESRIN)	x	X	x	X
S2 In Flight Commissioning (incl. preparation) (ESTEC and CNES)	X		X ³	X ¹
Venµs Pre-Studies and ATBDs authoring (CNES)	X		X ²	
Venµs In Flight Commissioning (incl. preparation) (CNES)	x		X ³	X ¹
MicroCarb Pre-Studies and ATBDs authoring (L1) (CNES)	х		X ²	
3MI GPP and IDS (ESTEC and LEONARDO)	X	X	X	х
3MI Ground Calibration (ESTEC and CSL)	x		X	
FLEX L2 Studies (ESTEC)	х	X		х

7

1 : Management of the team supporting Customer in the flight commissioning

2 : Development of prototypes useful for the studies

3 : Development of IQ and calibration tools useful for commissioning phase

Other Missions: Spot5 / SCARAB (Meghatropiques) / IIR (Calipso) / Taranis / Merlin / ... End customers: CNES, ESA, EUMETSAT

Small satellites

Natural evolution of our core activities

- Image processing : Missions & Ground segments
 - Support to mission specification, image quality & performance assessment
 - Ground segments specifications
 - Ad-hoc Ground Segment development
 - Training for civil and military missions
- Deep learning: On-board processing
 - Objectives:
 - Data reduction -> bottleneck for small satellites
 - Data analysis for intelligent payloads: agility inter-missions, downlink selection,

rapid information transmission ...

- Collisions detection/prediction
- Studies on advanced DNN simplification methods (CNES, ESA)
- Commercial products and services

VHR on LargeSats and CubeSats

LargeSats

CubeSats

Mission	Venµs	Pleaides HR	KompSat 3	WorldView 3
Resolution	5.3 m	0.7m (PAN)	0,7m (PAN)	0.31m (PAN)
Swath	27.5 km	20 km	15 km	13.1 km
Spectral bands	12 MS	PAN+4MS	PAN+4MS	PAN+8VNIR+8SWIR
Mass	260kg	940kg	980kg	2800kg

Mission/sensor	DOVE (Planet)	Chameleon (SAC)	KubeKam (SAtlantis)
Resolution	3.7m (@ 475km)	6m (@500km)	2m (@500km)
Swath / Frame	24.6*16.4 km²	49km	13,2 km
Spectral bands	RGB + NIR	PAN+4MS	PAN+4MS
Platform size / status	3U / 120+ on orbit	3U/ On the shelves	12U / On development

Very High Resolution missions are multi-spectral (MS) missions often based on **line-scan technology, with TDI** Panchromatic (PAN) band is often more resolved than MS bands.

The Radiometric model

Optical model : From radiance outside the instrument to photon flux observed by one-pixel detector

$$\phi_{(photons/m^2s)} = Sa_{(sr)} \cdot \int_{\lambda} SRF(\lambda) \cdot K^{-1}_{(J/photon)}(\lambda) \cdot R_{(W/m^2.sr,\mu m)}(\lambda) \cdot d\lambda + Noise$$

SRF : Spectral Response Function

- Sa : Solid angle of the detector
- K : Energy of one Photon at a given wavelength
- **R** : Radiance as input of instrument

Detector model : from photon flux to output digital count.

$$X_{(DC)} = Int [((\phi_{(photons/m^{2}.s)} \cdot A_{(m^{2})} \cdot Qe_{(e-/photon)} + Dark_{(e-/s)}) \cdot Ti_{(s)} \cdot G_{(V/e-)} + Offset_{(V)}) \cdot Qf_{(DC/V)} + Noise]$$

A : Area of the detectorQe : Quantum efficiencyDark : Dark currentTi : integration Time

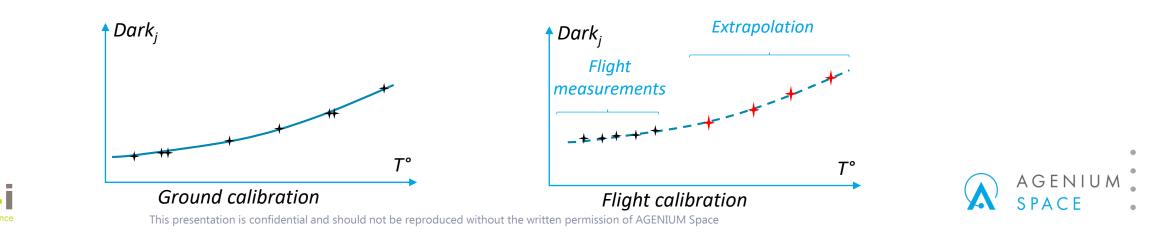
G : electronic GainOffset : electronic OffsetQf : Quantization factor

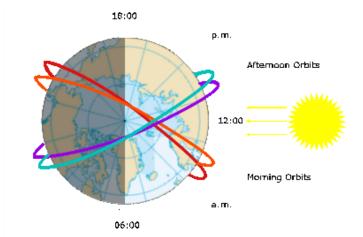
Simplified model for linescan multispectral sensor : $X_{i,j} = (A_{k,tdi}, g_{j,tdi}, R_{i,j} + Dark_{j,tdi})$ average_j (g_j)=1 for R_{ref} g_j : linear, polynomial, piece-wise linear

Estimation of Dark signal

Long acquisition (to reduce instrument noise) :

- over Ocean by night (without Moonlight).
- with Telescope shutter closed

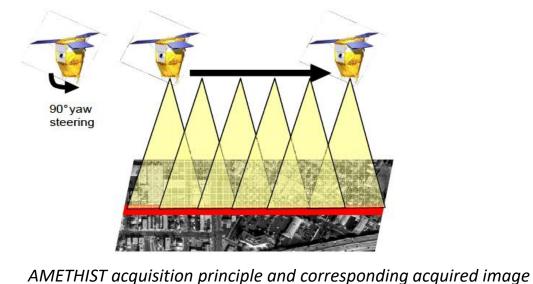

Dark dependence on temperature :

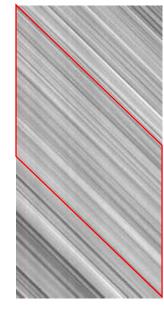

- Not an issue when focal plane is thermally regulated.
- Else, need to know dark currents function of temperature (=> cubesats)
- \Rightarrow [Tmin,Tmax]_{science} C [Tmin, Tmax]_{calibration}?

Not obvious when calibration acquired on eclipse side and science acquired on sun side of the orbit

One solution :

- On ground calibration : define the shape of thermal laws.
- In flight calibration : using the ground law to extrapolate new values at higher temperatures.


Estimation of gj (flat-fied)


Acquisitions with uniform targets covering the whole swath:

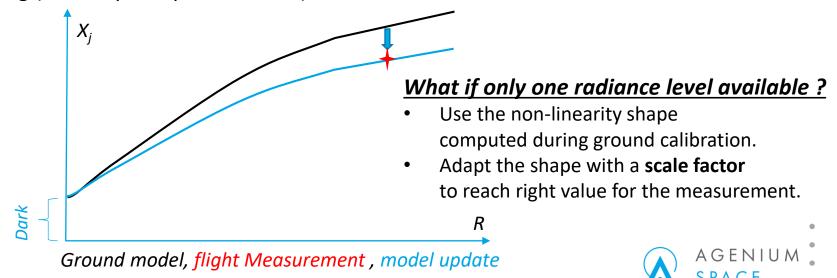
1/ Deployable sun diffuser (Sentinel 2) => Complex to develop on a cubeSat.

<u>2/ AMETHIST :</u> On any landscape with 90° yaw steering (Pleiades HR)

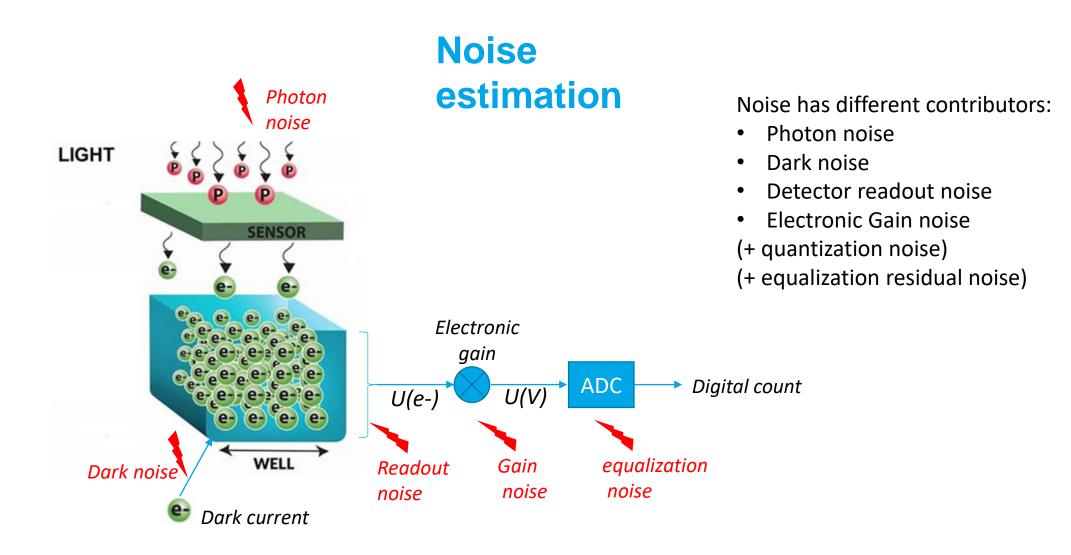
- \Rightarrow Need an accurate steering : scan-line parallel to the ground velocity => Complex for a CubeSat
- \Rightarrow Each pixel of the scan-line is acquiring the same landscape.
- \Rightarrow A histogram matching method allows to reach the inter-detector gains (including non-linearity)

(Courtesy of CNES)

Estimation of gj (flat field)


3/ Classical method : Uniform natural landscapes (0° yaw steering)

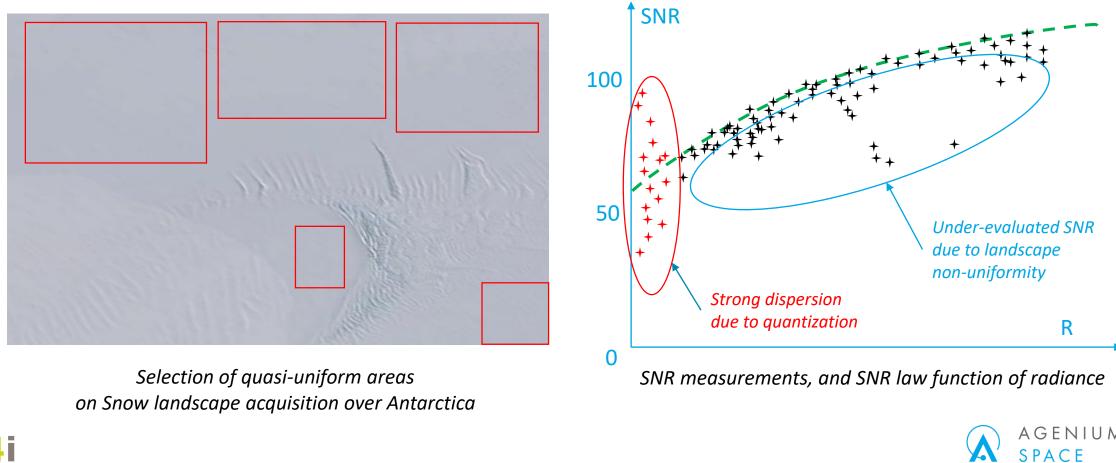
(Spot5, Venµs)


- \Rightarrow Identify the areas where landscape is uniform.
- \Rightarrow Correct from Dark and sun angles.
- \Rightarrow Compute mean-line to reduce impact of instrument and landscape noises
- \Rightarrow Method usable for CubeSats : compatible with small swath and bad agility

4/ Uniform natural landscapes +90° yaw steering

- \Rightarrow Limits the impact of landscape non uniformity across track.
- \Rightarrow Compared to AMETHIST :
 - \Rightarrow Allows less accuracy in yaw steering (landscape is quasi uniform)
 - \Rightarrow no direct access to non-linearity.

Some contributors are depending only on incoming flux, some are depending on digital count. Classical formula : $\sigma^2 = A + B.R$ (R : Observed radiance)


Noise

$\sigma^{2} = A + B.R$ SNR = $R/\sqrt{A + B.R}$

Characterization of A and B : use of uniform areas at constitution

• Uniform areas from diffuser acquisitions, or from natural landscapes

- Compute statistics only along the columns (to avoid perturbations due to equalization residues)
- Compute **HF standard deviation** (to avoid perturbations due to LF landscape variations)

Estimation of Ak (absolute radiometric calibration)

Acquisitions on reference targets:

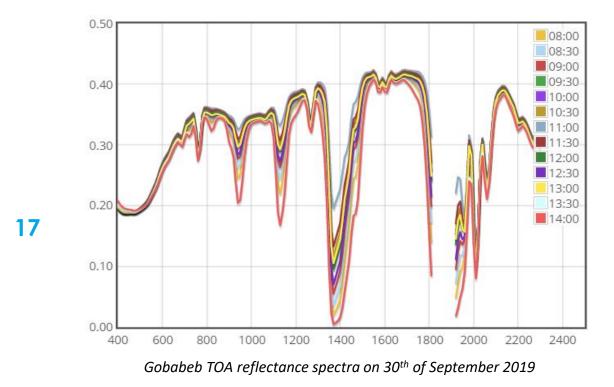
- 1. Sun diffuser or other internal references
 - Possible ageing issues
 - Complex for CubeSats
- 2. PICS (Sahara and Arabia sites)
 - BRDF + Atmosphere information available
 - Need to process its own radiative transfer
 - Targets are large scale sites (100*100km²)
- 3. Using RadCalNet
 - Easy to use, good accuracy
 - Only quasi Nadir observations on small targets.
- 16 4. On Moon
 - No atmosphere, nor ageing issues
 - ROLO/POLO models
 - Need strong de-pointing capabilities (CubeSats ?)
 - 5. Simultaneous Nadir Overpasses (SNO) with other sensors :
 - Comparison between sensors
 - Useful for a constellation of same satellites (different orbits)
 - Use of Largesat images as Methode Reference the written permission of AGENIUM Space

Sentinel2 sun diffuser (ESA, Sener, CSL)

Other methods :

- Rayleigh over ocean (blue bands)
- Deep Convective Clouds, Sunglint (interband calibration)

Moon Seen by Venµs (Courtesy CNES)



Estimation of Ak

RadCalNet provides :

- TOA reflectance spectra of 4 sites + associated uncertainties
- Corresponding to nadir observations
- Every 30min (9H-15H local time) when not cloudy
- Representative of ground surface of min 50*50m²

Ready to use :

- Integrate RADCALNET spectrum on Instrument SRF
- Compare with instrument observations

<u>Constraint :</u>

Works for quasi Nadir observations
 => Constraints on orbits

AGENIUM SPACE

Some clues for CubeSat radiometric calibration

Cost of solutions is a strong argument :

For sensor, platform, launch...

... even for calibration, and User Ground Segment (costs can be factorized in case of large constellation)

Calibration methods :

- Ak : RadCalNet if reachable by the mission orbit.
- g_i : classical method, Uniform areas reachable due to the small swath of the sensor.

Some specific issues to be tackled :

- <u>Low SNR</u> (even if compensation using TDI) : Importance to assess noise level : Noise computed on uniform landscape => method to discriminate landscape vs instrument noise.
 - <u>Stability of the sensor vs temperature</u> : to take into account in the radiometric model Importance to have a good ground calibration on a large set of temperatures.

A survey of in-flight radiometric calibration methods and their applicability to Nanosatellites

Rosario Ruiloba (Agenium Space), Emmanuel Hillairet (Geo41) THANK YOU FOR YOUR ATTENTION

VH RODA Workshop 2019, Frascati