

Dr. Wolfgang Koppe, Dr. Roland Perko Nov 2019





### Airbus Ground Control Points

GCP Background

**Extraction Workflow** 

Range Delay Correction Layers

SAR Candidate Detection

Epipolar Image Rectification and Point Matching

Validation

Summary





#### Ground Control Point (GCP)

- A measured land mark on earth with a known geo-location given in coordinates (X,Y,Z) in an related geo reference system
- The coordinates are measured *in-situ* with a DGPS

#### TerraSAR-X measured Ground Control Points

- Highest level of precision: measured from space with geo-location accuracies up to 10 cm
- World-wide available: Independent of cloud cover & illuminating
- Maximum efficiency: save costs & avoid in-situ risks
- Fresh & Quick: comprising data collection and processing



#### Example Eindhoven, Netherlands



Detections on buildings and infrastructure







- TerraSAR-X capabilities: High resolution, multi-beam image acquisition
- Along with the image data, detailed and very precise metadata are provided
- → high accurate 3D information extraction using stereo or multiple image data sets



Multi-beam imaging scheme of TerraSAR-X / PAZ (Ascending and Descending)

#### AIRBUS

- Radar satellite microwave are reflected from pole & ground
- All signals have the same traveling time and get focused within one point

Signature of detected point (example)



Ground object: metallic pole







Signature of detected point (example)



- Point measurements made in two or more images are used to determine the corresponding ground coordinates
- Intersection of two or more Radar Images → SAR Doppler and Distance equations → four equations are available if a point is measured in a stereo pair

AIRBUS

Range equation: 
$$r - |\mathbf{P} - \mathbf{S}| = 0$$
  
Doppler equation:  $\frac{\lambda f_{DC}}{2} = \frac{(\mathbf{\dot{P}} - \mathbf{\dot{S}})(\mathbf{P} - \mathbf{S})}{|\mathbf{P} - \mathbf{S}|}$ 

Radar images 1...n

## Background









### GCP Extraction

Fully Automatic Processing Chain









Epipolar rectification of images using a coarse DEM Find corresponding points via weighted KNN matching



### GCP Extraction

Accuracy: Influencing Components 1

#### Range Delay Correction





- High precise TerraSAR-X orbit
- Ionospheric signal propagation delay (caused by electrons)
- **Tropospheric signal propagation delay** (caused by air conditions, e.g. water vapor)

- Solid earth tides (caused by gravity of moon and sun)
- Plate tectonics ("continental drift")



#### **Blob Detection**





#### **Blob Detection**

#### Blob Detection via Matched Filter



Range





Detections



**Blob Detection** 

Blob Detection Subpixel Refinement, Optimizing an energy functional for segmentation





Coordinates: blue - input; red - refined



### GCP Extraction

Accuracy: Influencing Components 2

Error Budget: Geometric Constellation

#### **Blob Detection**



#### error of 0.5 Pixel (~0.25m)

3D location accuracy:  $\Delta r = 0.25$  [m]





GCP

**Extraction** 

#### **True DEM Epipolar Rectification Evolution**

Epipolar Image Rectification and Point Matching



- Non-linear scaling in epipolar direction to reverse the local scaling in range direction
  - Image matching must not deal with SAR specific geometric constraints



AIRBUS

Epipolar Image Rectification and Point Matching

#### image 1 (ASC 20160407 ASC 20160413 epi): 1857 (red)



**Epipolar transformed Images** 

image 2 (ASC 20160413 ASC 20160407 epi): 1956 (green)



image 1 (ASC 20160407 ASC 20160413 epi): 582 (red)



#### Finding Corresponding Points via Weighted KNN-Matching

image 2 (ASC 20160413 ASC 20160407 epi): 582 (green)



### Validation

Point Diagram Differences X/Y Values UTM





## Summary

- Identify man made scatters in SAR images and extract their 3D position using radargrammetry at decimeter accuracy (worldwide)
- Point matching is performed in 1D based on novel true DEM epipolar rectification
- Atmospheric path delay causes range offsets and is corrected with local and timely information
- Constraints: point identification in different images
- Horizontal Accuracy for well detected pole structures up to 10cm
- Challenge: to filter highly accurate points out of the point cloud

- 1. Hannes Raggam et al. "Assessment of the stereo-radargrammetric mapping potential of TerraSAR-X multibeam spotlight data", IEEE TGRS, 48(2):971-977, 2010.
- 2. Perko et al.,"Forest assessment using high resolution SAR data in X-band", Remote Sensing, 3(4):792-815, 2011.
- 3. Gutjahr et al. "The epipolarity constraint in stereo-radargrammetric DEM generation", IEEE TGRS, 52(8):5014-5022, 2014.
- 4. Gutjahr et al., "3D-mapping from TerraSAR-X staring spotlight data", IEEE IGARSS, 1817-1820, 2015.
- 5. Perko et al., "DEM-based epipolar rectification for optimized radargrammetry", IEEE IGARSS, 969-972, 2017.



# Thank you!

#### Laura Henrichs

GCP Product Manager Airbus Defence and Space

M +49 151 42 6666 89 E laura.henrichs@airbus.com

