CNES Experience in Image Quality and Illustration with Pleiades Very High Resolution Data

Patrice Henry

Centre National d'Etudes Spatiales (CNES), 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, France

35 Years of Experience in 'Image Quality' of Optical Satellite Imaging Sytems: Ground Characterization, Calibration, Validation, Performances Assessment, Processing Algorithms... Through:

- SPOT 1, 2 & 3 (10m Panchro and 20m Multispectral VNIR)
- **SPOT 4** (10m Panchro and 20m Multispectral VNIR + SWIR)
- **SPOT 5** (2.5m Panchro and 10m Multispectral VNIR + SWIR F/B Stereo)
- VGT (1km Daily Global Coverage VNIR + SWIR)
- **POLDER/PARASOL** (Polarization and Multiangle Viewing VNIR)
- Pléiades (0.7m Panchro and 2.8m Multispectral VNIR)
- Sentinel 2 (10m Multispectral VNIR + SWIR)
- Venµs (5m Multispectral VNIR 2 days revisit)

Experience extended to other Earth Observation Systems: TIR Sounding (IASI), Thermal IR Imaging (Calipso/IIR), Passive Microvawe (Megha-Tropiques)

cnes · · · ·

CNES concept of 'Image Quality':

- Image performance considered at system level (board+ground)
 - Satellite / instrument / ground processing...
 - Image quality budget performed at system level
 - End to end simulations
- Continuity in the responsability of image performance for all the project phases
 - Design / development / commissionning / exploitation
 - Image quality manager member of the project team
- Operational image quality monitoring during exploitation phase
 - Dedicated team, dedicated tools, dedicated environment
 - Strong link between expertise/monitoring

In CNES we prefer 'Image Quality Commissionning' than 'Calibration/Validation'. The same but even more...

Development of generic tools, data bases, sites catalogs Both for radiometry and geometry

- SADE: measurements data base over calibration sites (desert, snow, ocean ...)
- MUSCLE: calibration tools environment
- ROSAS: calibration over instrumented site (La Crau, Gobabed...)
- High accuracy GCPs data base
- AGILE: Geometrical performances assessment workshop
- SIGMA/Euclidium: viewing modelization and geometrical corrections
- Images correlation
- Optimized resampling
- MTF assessment
- Denoising...

But also...

Dedicated tools and methods developed to deal with satellite/instrument/mission specificities

- Very high resolution image location assessment (Pléiades)
- Microvibrations assessment (SPOT5, Pléiades)
- Stereo performances assessment (SPOT5/HRS, Pléiades, Venµs)
- Polarization parameters determination (POLDER/PARASOL)
- Stray light correction assessment (POLDER, Venµs)
- Moon calibration thanks to satellite agility (Pléiades, Venµs)
- Radiometric calibration over clouds (VGT, POLDER, MERIS)

Illustration with Pléiades How to use satellite agility to assess Image Quality?

PLEIADES Mission Overview

Spatial resolution:

- Panchromatic: 0.70 m (product resampled @ 0.5m)
- XS (B, G, R, NIR): 2.80 m

Swath: 20 km

Revisit Capability: 1 day with 2 satellites

Mode	Band	Spectral characteristics
Multi spectral	1	430 – 550 nm
	2	490 – 610 nm
	3	600 – 720 nm
	4	750 – 950 nm
Panchromatic	Р	480 – 830 nm

- PHR1A launch: December 17, 2011
- PHR1B launch: December 2, 2012

VH-RODA 2019 Workshop – ESRIN – Nov. 18-22

PLEIADES Satellite

New Concept

A small ((<1000 kg) and very agile satellite to improve operational capability and minimize the conflicts between users

Designed for high agility

Compact and rigid satellite with low inertia and fixed solar array

Attitude control system with 4 powerful CMG (Control Moment Gyros) actuators

agility (roll and pitch):
5° in 8 seconds
10° in 10 seconds
60° in 25 seconds

Designed for high geometric image quality

Very stable instrument with very accurate sensor heads mounted on the optical bench (3 star trackers and 4 fiber optical gyrometers

Autonomous navigation with DORIS/DIODE system

PLEIADES Instrument

Korsch camera:

focal length = 13 m input diameter = 0.65 m PA retina : 5 TDI detectors XS retina : 5 four-color CCD

Radiometric resolution: 12 bits On-board detectors normalization Wavelet compression: from 1.4 to 3.33 bits/pixel

Carbon-Cyanat Crown and Spider Blades Primary mirror M1 (Zerodur) Carbon-Carbon cylinder Shutter mechanism Folding mirror Bus interface (with launcher interface cone) Tertiary mirror M3

Highly Integrated Detection Unit with its radiators

Refocusing Device

Mecca "tower clock" viewed by PLEIADES 1B every 90 sec. in a single pass to see 3 faces of the building...

...and the minutes needle moving!

Viewing the Stars for MTF Assessment and Refocusing (1)

Viewing the Stars for MTF Assessment and Refocusing (2)

Viewing the Moon for Radiometric Calibration (1)

13 © cnes

Viewing the Moon for Radiometric Calibration (2)

cnes

PLEIADES Moon dataset used to enhance the Lunar radiometric calibration model (ROLO)

90° Rotation of the Satellite for Uniformity Calibration

AMETHIST Mode: each pixel successively views the same landscape

Repetitive Acquistion for Signal to noise Assessment

Acquisition duration

- a few seconds
- about 60000 rows

Relative good line-of-sight stability

use of 1000 rows

Vertical profile of 1 column and for 1000 rows

Multiangle Viewing for Radiometric Calibration over La Crau (1)

PHR1-A Video acquisitions over La Crau - March 28, 2012

> 19 measurements 4 min. total duration $\theta s \approx 42 \text{ deg}$ $\theta v \text{ min} = 13.2 \text{ deg}$ $\theta v \text{ max} = 57.7 \text{ deg}$

cnes

Multiangle Viewing for Radiometric Calibration over La Crau (2)

BRDF modelling and correction

Bands	Ak ROSAS / Ak Ground (mean)	Standard deviation	Max-Min	Ak Official / Ak Ground	Ak ROSAS / Ak Official
B1 (blue)	0.92	0.0053	0.0183	1.05	12.5%
B2 (green)	1	0.0060	0.0308	0.95	5%
B3 (red)	1.025	0.0031	0.0522	0.96	6.5%
B4 (PIR)	0.915	0.0029	0.0406	0.94	2,5%
B5 (PAN)	0.975	0.0045	0.0198	0.95	2,5%

cnes .

. . .

Viewing the Stars for Microvibration Assessment

Frequence

Use of images taken in a crosswise mode (LOS orientation variation = 90°) to separate dynamic and static phenomenon which are specific to the push-broom acquisition principle

Crosswise Viewing for Focal Plane Cartography (2)

To conclude...

Image Quality is considered at CNES as a specific skill

- Sharing experience from one mission to other ones
- Knowledge transmission ensured thanks to a dedicated organization
- 3 generations of 'Image Quality' experts since the 80's (SPOT1) !!!

Ensuring high Image Performances and Efficiency

Next one is : CO3D !!!

- 3D global coverage in 5 years
- Relative altimetric accuracy: 1 m (B/H~0,3)
- Synchronous acquisition per satellites pair
- Capacity for urban quadri-stereo every 2 days
- Massive 3D production based on cloud facilities

