An Internal Calibration System Model for the Estimation of SAR Instrument Errors

Committee on Earth Observation Satellites Workshop 18-22 November 2019

Jan Paul Kroll, Marwan Younis and Gerhard Krieger Microwaves and Radar Institute German Aerospace Center (DLR) Oberpfaffenhofen, Germany

Knowledge for Tomorrow

Future Systems

Scan-On-Receive (SCORE)

One Azimuth Channel Of A Multi-Channel SAR System

- Transmit-Receive-Module (TRM)
- Radio Frequency Unit (RFU)
- Digital Beamforming Unit (DBU)
- Combination of elevation channels

(age

Chart 4

System Model

Error Sources

Total Error

CalTone Calibration Concept

Calibration signal sequence

Sequence modes:

➤1 of N: calibration signal sequentially coupled to one element

Calibration signal frequency:

-100

➢ Fixed frequency

Frequency stepping

60 50

40

30

20

10

ο

-200

amplitude [Volt]

Estimation Of The Drift

RX Drift Estimation Error

Chart 11

- SAR echo signal is zero mean signal
- > Drift estimation is uniformly distributed around true drift
- Improve drift estimation using multiple previous values

Comparison Of Improved Estimation Methods

Summary

➤Mathematical model developed

Simulation tool implemented

- Aid system design
- Adaptable to any multi-channel instrument
- Different calibration methods
- Determine the errors and residual errors
- Performance analysis
- ➤Single tone calibration analysis
- Investigated drift estimation methods

