VH-Roda and CEOS SAR Workshop 2019

Towards Operational SAR Imaging Geodesy: An Extended Time Annotation Dataset for Sentinel-1 Image Products

<u>C. Gisinger¹</u>, S. Suchandt¹, H. Breit¹, U. Balss¹, M. Lachaise¹,

T. Fritz¹, M. Eineder¹, N. Miranda²

¹ German Aerospace Center (DLR)
² European Space Agency (ESA)

Knowledge for Tomorrow

Motivation for ETAD: Extended Time Annotation Dataset for Sentinel-1

- SAR achieves very high geolocation accuracy at the centimetre level when applying geodetic corrections
- ESA has commissioned DLR to develop a geodetic SAR product for S-1 to make this accessible to users
- ETAD product key features
 - Support for all Sentinel-1 SM & IW data takes (EW desirable)
 - Fully applicable to SM & IW SLC products
 - Includes the Sentinel-1 precise orbit solution
 - User-friendly products with full coverage of Sentinel-1 data takes
 - Burst-wise grouping of gridded corrections for direct usage
 - Regularly sampled grids in slant range and azimuth (~200m)
 - **NetCDF4/HDF5 data format** distributed as SAFE containers

• Demand for a highly efficient processor at S-1 PDGS

- Robust and accurate methods supporting global applicability
- Reliable background data with timely availability
- High throughput to keep up with Sentinel-1 data acquisition

Ionospheric Delay and Solid Earth Tides Corrections

• Implementation of geodetic techniques to model the ionospheric delay and the solid Earth tidal deformations

Ionosphere: products by IGS Analysis Centers¹

- Vertical Total Electron Content (TEC) maps
- Based on global geodetic GNSS network
- Daily solutions: 5° x 2.5° x 1h \rightarrow stack of 25 maps
- $1 \text{ TECU} = 10^{16} \text{ electrons per } m^2$
- About 2 cm per TECU in C-Band slant range

Solid Earth tides: conventional model of IERS²

- Deformation of Earth's crust by gravitational force of Sun & Moon
- Vertical and horizontal displacements: ± 25 cm / ± 6 cm
- Full IERS model implementation sensitive to 1mm signals
- Mapping to SAR slant range & azimuth

¹ Hernándenz-Pajares et al. 2009, The IGS VTEC maps: a reliable source of ionospheric information since 1998, J. Geod.
 ² Petit and Luzum (eds.) 2010, IERS Conventions 2010, Online: www.iers.org

Sentinel-1 SAR System Corrections^{1,2}

• Systematic effects due to the Sentinel-1 SAR IPF that cause deviations from the zero Doppler convention

¹ Gisinger et al. 2018, Recent Findings on the Sentinel-1 Geolocation Accuracy using the Australian CR Array, Proc. IGARSS18 ² Piantanida et al. 2018, Accurate Geometric Calibration of Sentinel-1 Data, Proc. EUSAR 2018

esa

Tropospheric Delay: Direct Integration of ECMWF NWP Data¹

Ellipsoid (WGS-84)

• Numerical approximation of the LOS-integration of the refractive index derived from Operational ECMWF model

→ computation time of 20 minutes

¹ Cong et al. 2018, *Mitigation of Tropospheric Delay in SAR and InSAR Using NWP Data*, Remote Sensing

Sensitivity Analysis of Path Delay Integration

• Impact of configurable parameters on tropospheric path delay integration results

Test conditions:

- 28 S-1 datasets (Java, French Guiana, Spain, China, Norway, Canada)
- 1 Slice = 1 Mio grid points each test case
- H/W: 32 cores a 3.3 GHz & CentOS Linux
- Statistics of path delay differences: custom. configuration vs. default

Results of Path Delay Sensitivity Analysis

• Average mean and standard deviation in millimeters across the 28 cases: optimized – default configuration

• Combination of all tunable parameters: changes with respect to default

MLR = 4, int1 = 50 m, int2 = 100 m				
Horizontal interpolation i	Average mean	Average STD	Avg. execution time	Our basis for furth
10 x	3.4 mm	±3.9 mm	2.69 min	$\int \nabla r$ code optimizations

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)¹

¹ Landskron and Böhm 2017, VMF3/GPT3: refined discrete and empirical troposphere mapping functions, J. Geod.

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays
 - Solid Earth tides

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652
+ SET	0.031 ± 0.257	-2.927 ± 0.652

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays
 - Solid Earth tides
 - S-1 system corrections

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652
+ SET	0.031 ± 0.257	-2.927 ± 0.652
+ System	0.018 ± 0.054	-0.195 ± 0.248

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays
 - Solid Earth tides
 - S-1 system corrections
 - Calibration (MET, Finland)

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652
+ SET	0.031 ± 0.257	-2.927 ± 0.652
+ System	0.018 ± 0.054	-0.195 ± 0.248
+ Cal	0.006 ± 0.054	0.133 ± 0.248

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays
 - Solid Earth tides
 - S-1 system corrections
 - Calibration (MET, Finland)
- Temporal filtering: mean per CR

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652
+ SET	0.031 ± 0.257	-2.927 ± 0.652
+ System	0.018 ± 0.054	-0.195 ± 0.248
+ Cal	0.006 ± 0.054	0.133 ± 0.248

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays
 - Solid Earth tides
 - S-1 system corrections
 - Calibration (MET, Finland)
- Temporal filtering: mean per CR

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652
+ SET	0.031 ± 0.257	-2.927 ± 0.652
+ System	0.018 ± 0.054	-0.195 ± 0.248
+ Cal	0.006 ± 0.054	0.133 ± 0.248

- Australian CR array with 40 CRs
 - 79 S1B IW datatakes from orbit 111
 - Period: 10/2016 10/2019
 - S-1 precise orbit product
 - Accurate ITRF CR coordinates
- Geolocation quality of Rg & Az
 - Default product
 - Tropospheric delays (VMF3)
 - lonospheric delays
 - Solid Earth tides
 - S-1 system corrections
 - Calibration (MET, Finland)
- Temporal filtering: mean per CR
- CRs updated ITRF coordinates

	Rg [m]	Az [m]
Default	3.118 ± 0.305	-2.916 ± 0.652
+ TD	0.215 ± 0.275	-2.916 ± 0.652
+ ID	0.058 ± 0.270	-2.916 ± 0.652
+ SET	0.031 ± 0.257	-2.927 ± 0.652
+ System	0.018 ± 0.054	-0.195 ± 0.248
+ Cal& <mark>CRs</mark>	0.020 ± 0.043	0.131 ± 0.247

See talk by Thankappan et al., Updates to the Australian corner reflector array coordinates and resulting improvements [...]

Conclusions

- Extended Time Annotation Dataset that will unlock full potential of Sentinel-1 geolocation capabilities
- Geodetic techniques to compute the corrections for:
 - Tropospheric & Ionospheric path delays
 - Solid Earth tidal deformations
 - Sentinel-1 systematic effects
- In-depth study of tropospheric computation revealed tuneable parameters
- ETAD product with an accuracy of better than 20 cm (rg) and 10 cm (az) for new imaging geodesy applications

Possibility of phase correction

Acknowledgement

- Funded by the EU Commission's Copernicus Programme through the ESA contract 4000126567/19/I-BG
- We thank ESA for supporting this activity
- Disclaimer:

"The views expressed herein can in no way be taken to reflect the official opinion the European Space Agency or the European Union"

Sentinel-1 Bistatic Azimuth Correction

• Remove the IPF bulk contribution and apply the total bistatic azimuth correction

Sentinel-1 Doppler-Shifts in Range

- The sensor movement leads to Doppler-shifts Δf_D in the radar pulses
 - Echo separation in azimuth \rightarrow basic SAR principle
 - But t dependent range shifts in TOPS SAR if not corrected after range compression

Sentinel-1 Azimuth FM-rate Mismatch due to Topography

- The azimuth filter construction uses an effective velocity parameter v_e which
 - depends on topography (sensor X_s to target X_T geometry)
 - is usually assumed constant over large blocks of azimuth data (e.g. burst wise)
- Az Doppler FM-rate k_a of the filter may not matches true signal \rightarrow issue for TOPS¹

Sentinel-1 Azimuth FM-rate Mismatch due to Topography

- Practical example for an extreme case: CR at Torny-Le-Grand (CH) that is
 - located at the very border of an IW product which includes the Alps
 - and lies at the edge of a burst

S1A_IW_SLC__1SDV_**20160707**T053457_201607 07T053524_012038_0129AA_34F1.SAFE

> f_{DC} = 1576.0016 Hz $k_{a \, geo}$ = -1927.**0241** Hz/s $k_{a \, IPF}$ = -1927.**4002** Hz/s Δt_{FMC} = 0.0001596 s \approx **1.085 m**

