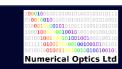

Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

DIMITRI overview and evolution

M. Bouvet (ESA), B, Alhammoud (ARGANS), B. Berthelot (MAGELLIUM), J. Hedley (Numerical Optics Ltd)

Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison


Outline

Overview of DIMITRI

Examples of results from DIMITRI for S3/OLCI A&B and S2/MSI A&B

→Ongoing work on the next version DIMITRI V4

DIMITRI: what for?

Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

DIMITRI: Database for Imaging Multispectral Instruments and Tools for Radiometric Intercomparison

Sensor-to-sensor comparisons

- → Sensor to simulation comparisons
- Sensors: (A)ATSR, MERIS, MODIS-A, Proba-V, OLCI, SLSTR, S2/MSI, LANDSAT-8/OLI
- Used in commissioning phase and during routine operations at ESA

Overview of DIMITRI (V3): the methodologies

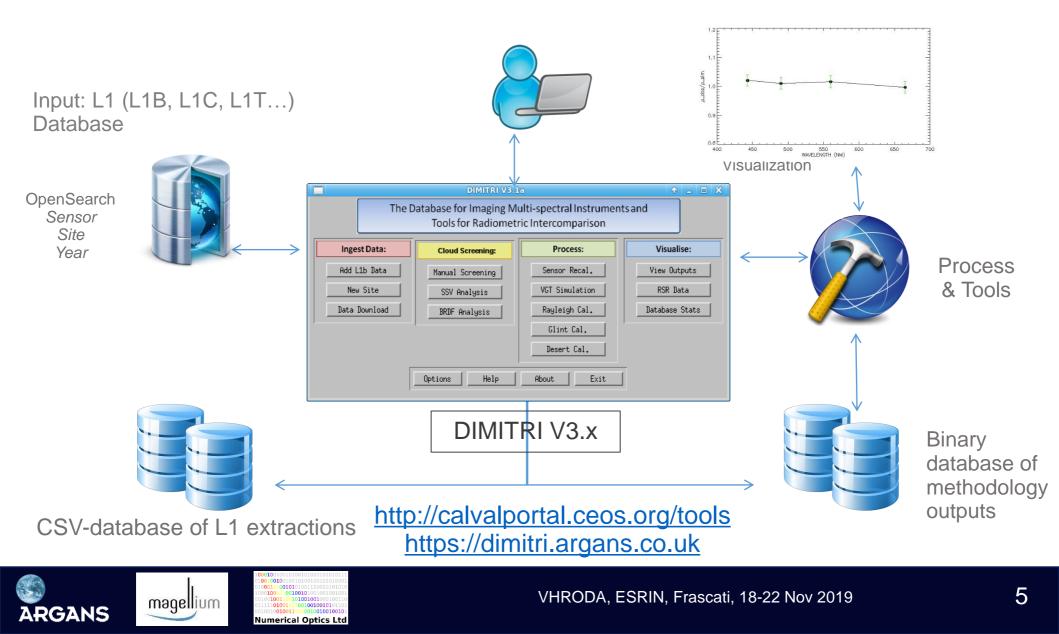
DIMITRI

Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

Rayleigh scattering calibration	Sun-Glint inter-bands calibration	Desert (PICS) calibration	Sensor-to-Sensor intercalibration
Absolute calibration coefficient: as ρ ^{obs} /ρ ^{sim}	Absolute Inter-band calibration coefficient: as ρ ^{B(i)} /ρ ^{B(ref)}	Absolute calibration coefficient: as ρ ^{obs} /ρ ^{sim}	Absolute inter-calibration coefficient: as ρ ^{obs} /ρ ^{REF}
Vermote et al (1992); Hagolle et al (1999)	Hagolle et al (1999; 2004); Nicolas et al (2006)	Bouvet (2014)	Bouvet et al. (2006)
 Over VIS bands Uncertainty <5% Very stringent criteria 	 Over VNIR bands Uncertainty <2% Very stringent criteria 	 Over VNIR bands Uncertainty <5% Uses surface BRDF 	 VIS, NIR & SWIR bands Uncertainty <5% Limited matchups

http://calvalportal.ceos.org/tools

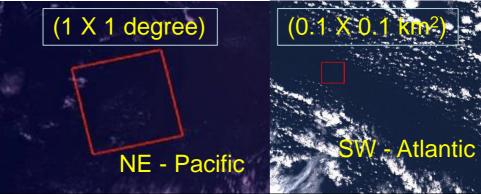
https://dimitri.argans.co.uk



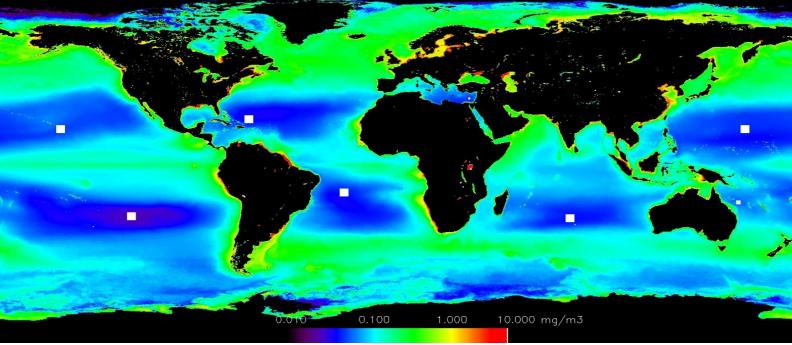
Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

opernicus

Overview of DIMITRI (V3): the software architecture



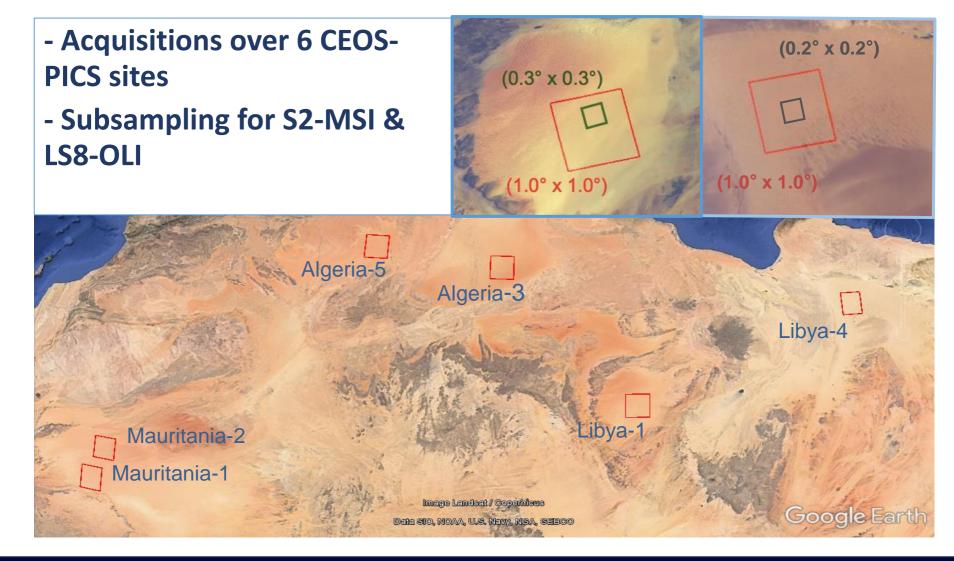
Overview of DIMITRI: ocean sites


DIMITRI

Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

Acquisitions over
6 ocean sites
Small sites for S2-MSI

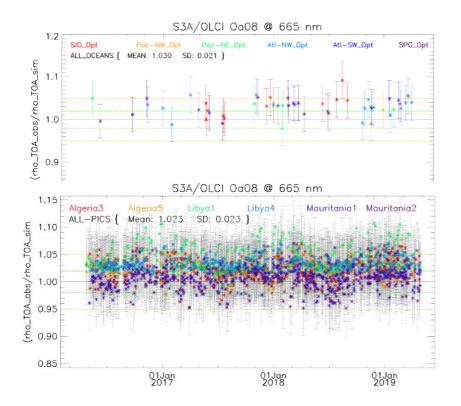
Yearly mean GlobColour GSM Chl1 over the 1998—2012 period

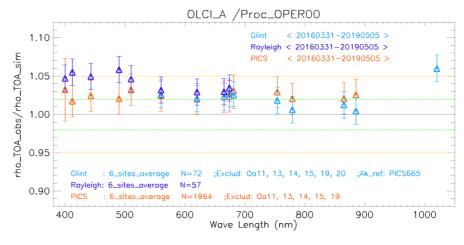


Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

Overview of DIMITRI toolbox : desert sites

opernicus

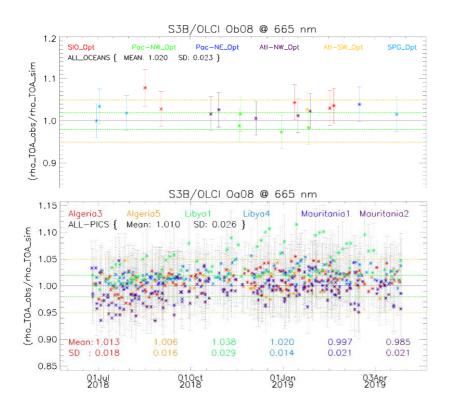

Database for Imaging Multi-spectral Instruments and Tools

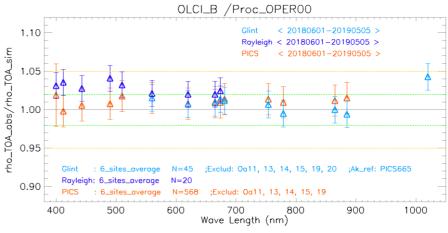


Results over Sentinel-3A/OLCI (L1b):

- Good consistency
- Very good stability (trend <0.3%/y)
- Gain coefficients are higher than the mission reqs. (2%)

Alhammoud et al. (LPS-2019)

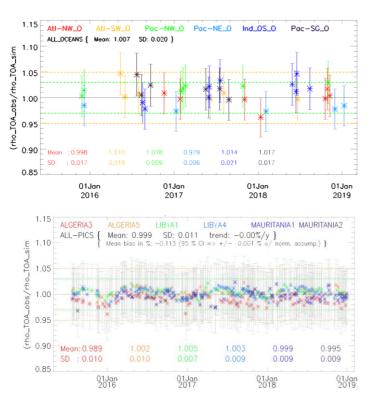

Database for Imaging Multi-spectral Instruments and Tools

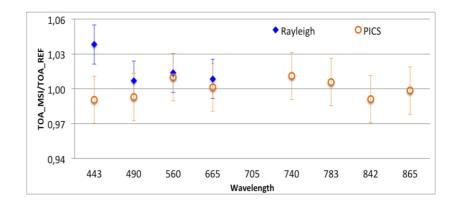

for Radiometric Intercomparison

Results over Sentinel-3B/OLCI (L1b):

- Good consistency
- Good stability (no trend detectable)
- Gain coefficients are within the mission reqs. (2%)
- OLCI-A TOA-reflectance is brighter than OLCI-B one (~2-3%)

Alhammoud et al. (LPS-2019)




Results over Sentinel-2A/MSI (L1C):

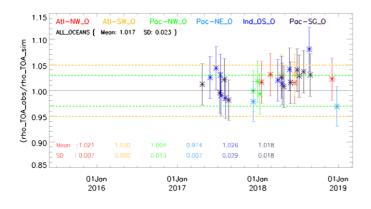
MIT

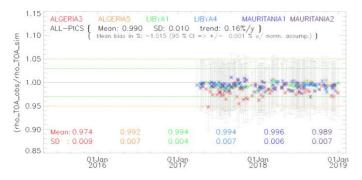
Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

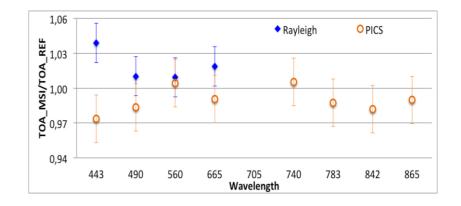
Sunglint methodology has not been considered in S2MPC yet.

- Good consistency
- Good stability (no trend detectable)
- Gain coefficients are within the mission reqs. 5% (target 3%)
- OLCI-A TOA-reflectance is brighter than OLCI-B one

(Alhammoud et al. IEEE-JSTARS 2019)







Results over Sentinel-2B/MSI (L1C):

Sunglint methodology has not been considered in S2MPC yet.

- Good consistency
- Good stability (no trend detectable)
- Gain coefficients are within the mission reqs. 5% (target 3%)
- MSI-A TOA radiometry is "brighter" than MSI-B radiometry (~1-2%)

(Alhammoud et al. IEEE-JSTARS 2019)

SENTINEL 2 Mission Performance Centre


Conclusion

Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

OLCI-A & B Level-1 radiometry show a good consistency and stability

- The observed OLCI-A TOA-reflectance is brighter than the OLCI-B one 2-3%
- Radiometric performance is nominal and stable for S2A and for S2B.
- →Good agreement between S2A and S2B radiometry within 1 or 2%.

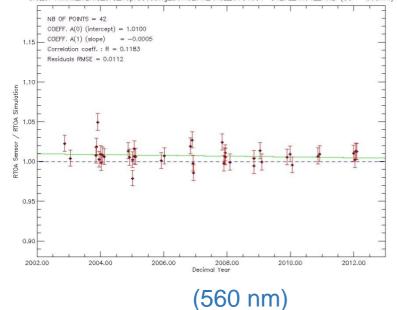
Improvement implemented in DIMITRI V4

- Improved architecture and data format (done)
- Improvements to the Rayleigh and Glint methodologies (done):
 - > Hyperspectral LUT based on MYSTIC simulations
 - Surface pressure adjustment based on the Rayleigh optical thickness following Bodhaine et al. 1999
 - > Water leaving BRDF modelling based on Hydrolight simulations
- Parallel implementation of the Rayleigh and Glint methodologies by Magellium based on 6S radiative transfer (ongoing)
- Parallel implementation of the PICS methodology using MODIS BRDF products and 6S radiative transfer (ongoing)
- Implementation of the Deep Convective Clouds methodology (ongoing)
- Extension of the PICS methodology of Bouvet 2014 to snow covered sites (ongoing)

Database for Imaging Multi-spectral Instruments and Tools

D

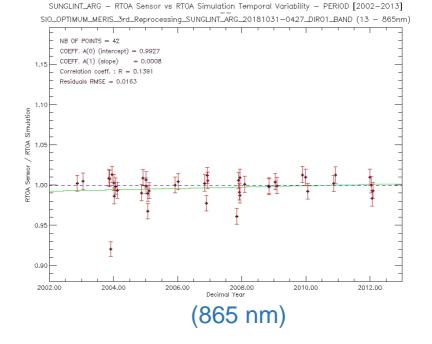
for Radiometric Intercomparison



Preliminary results over MERIS 3RP: SUNGLINT; SIO-OPT

Before : HS-LUTs + Atmos-P-adjustment

(N: 42)


Defore : HS-LUT SUNGLINI_ARG - RTOA Sensor vs RTOA Simulation Temporal Variability - PERIOD [2002-2013] SIO_OPTIMUM_MERIS_3rd_Reprocessing_SUNGLINI_ARG_20181031-0427_DIR01_BAND (05 - 560nm)

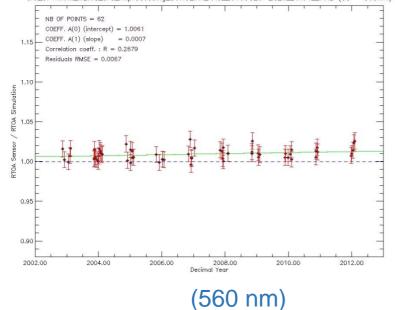
10010010

01010010010000 .00100100100100100

Numerical Optics Ltd

Database for Imaging Multi-spectral Instruments and Tools

for Radiometric Intercomparison

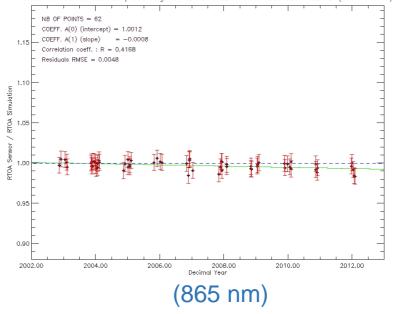


Preliminary results over MERIS 3RP: SUNGLINT; SIO-OPT

After : HS-LUTs + Atmos-P-adjustment

(N: 62)

ETEMULARG - RTOA Sensor vs RTOA Simulation Temporal Variability - PERIOD [2002-2013] SID_OPTIMUM_MERIS_3rd_Reprocessing_SUNGLINT_ARG_20190320-2320_DIR01_BAND (05 - 560nm)

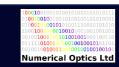


10010010

01010010010000 .00100100100100100

Numerical Optics Ltd

SUNGLINT_ARG - RTOA Sensor vs RTOA Simulation Temporal Variability - PERIOD [2002-2013] SIO_OPTIMUM_MERIS_3rd_Reprocessing_SUNGLINT_ARG_20190320-2320_DIR01_BAND (13 - 865nm)


Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison

Concluding remarks

- DIMITRI V3 is used for the in-flight radiometric monitoring and assessment of a number of ESA EO optical imagers
- It is available from <u>http://calvalportal.ceos.org/tools</u> (or <u>https://dimitri.argans.co.uk</u>)
- A new version DIMITRI V4 is functional, nevertheless it is still under development and testing. It will supersede in the long run the current version V3.

