Summary of Calibration and Research Activities of the Advanced Land Observing Satellite-2 (ALOS-2)

19 November, 2019

Takeo Tadono, Masanobu Shimada, Takeshi Motohka, Masato Ohki, Masato Hayashi, Takahiro Abe, Tomohiro Watanabe, and Ake Rosenqvist Earth Observation Research Center, Japan Aerospace Exploration Agency (JAXA EORC)

Japan Aerospace Exploration Agency

Contents

1. Mission Overview and Status

2. Calibration Results

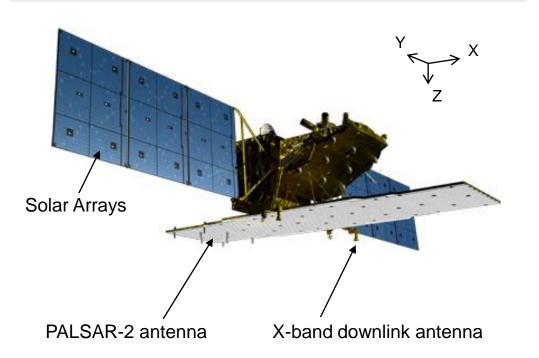
- Radiometry
- ✓ Geometry

3. Research Activities Examples

- √ Responses to natural disasters
- ✓ Global environment issue: Forest monitoring

4. What are Next?

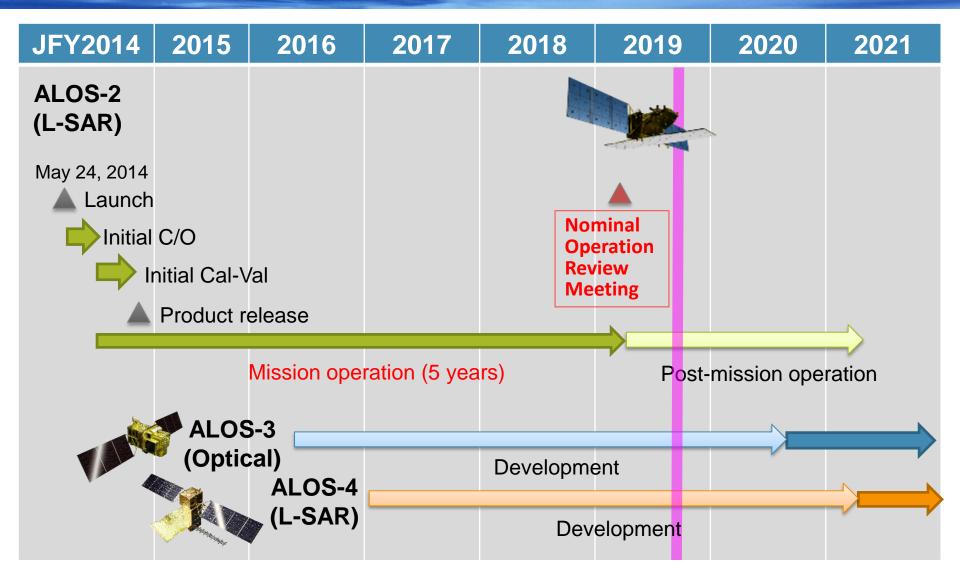
- ✓ Advanced Optical Satellite (ALOS-3)
- ✓ Advanced SAR Satellite (ALOS-4)


5. Summary

ALOS-2 "Daichi-2"

Mission objectives:

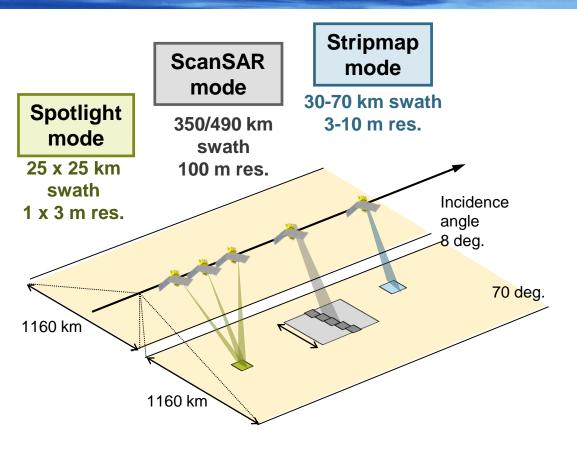
- Disaster monitoring (Earthquake, Volcano, Landslide, Flooding, ...)
- Environmental monitoring (Forest, Ice sheet, ...)
- Agriculture, natural resources, and ocean
- Technology development



Mission sensor	PALSAR-2 (Phased Array type L-band Synthetic Aperture Radar 2)
Launch	May 24, 2014 H-IIA launch vehicle FY24
Mass	2.1 tons
Lifetime	5 years (Target: 7 years)
Orbit	Sun-synchronous, 628 km altitude, 14 days revisit, Orbit control: ≦ +/- 500 m
Local sun time	12:00±15 min (descending)
	24:00±15 min (ascending)
Mission data transmission	X-band: 800 Mbps (16 QAM), 200/400 Mbps (QPSK)

The compact infrared camera (CIRC) and SPAISE2 for detecting ships are carried as a technology demonstration payload.

ALOS-2 Mission Operation



ALOS-2 Mission Operations in 2019

- ALOS-2 and PALSAR-2 instrument status nominal
- Completing 5 years in orbit. ALOS-2 entering "postoperational" phase from May 2019
- Reduction of duty cycle from 50% to 30%
- Impact on Basic Observation Scenario (BOS)
 - 10 m dual-pol Fine Beam mode
 - Observations reduced to single global coverage per year at top priority
 - Additional observations planned at low priority → focus on <u>Super Sites</u>
 - 50 m ScanSAR
 - No change.
 - Every 42-day repeat maintained

PALSAR-2 Observation Mode

- Quick response (latency < 1 day) for disaster monitoring
 - Wide observable range (incidence angle 8-70 deg.)
 - Right / left pointing

Spotlight mode Kobe, Japan

PALSAR-2 Calibration Summary

- On-board internal calibration is performed every 3 months.
- Product quality of major observation modes is evaluating regularly using SAR data over calibration sites.
- The standard product processing software was updated on June 2018 (radiometric calibration) and on Nov. 2018 (correction of range offset).
- > PALSAR-2 keeps in good conditions and performances.

Calibration summary as of September 2019.

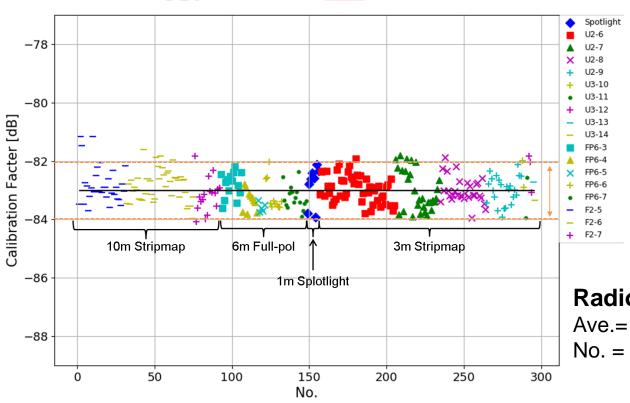
Items	Results					
Geometry (RMSE)	[Stripmap and Spotlight] 6.29 m (L1.1) / 6.73 m (L2.1) [ScanSAR] 60.77 m (L1.1) / 29.33 m (L2.1)					
Radiometry	RCS accuracy (1σ) 0.55 dB (Corner Reflectors) 0.41 dB (Amazonian forests)					
	VV-HH amplitude ratio	1.002 (σ=0.012)				
Polarimetry [SM 6m]	VV-HH phase difference	-0.148 deg (σ=1.446)				
	Cross talk	[HV/HH] -43.27 dB (σ=6.83) [VH/VV] -42.94 dB (σ=4.70)				

PALSAR-2 Radiometric Calibration

- Digital number of PALSAR-2 product can be converted to sigma-zero value by using the following equation.
- The Calibration Factor (CF) in the equation is evaluated by measuring CRs.

$$\sigma^0 = 10\log_{10}\langle DN^2 \rangle - CF + A$$

(for L1.1)


DN: digital number

$$CF = -83 dB$$

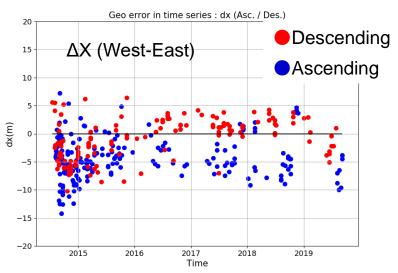
$$\sigma^0 = 10\log_{10}\langle DN^2 \rangle - \overline{CF}$$

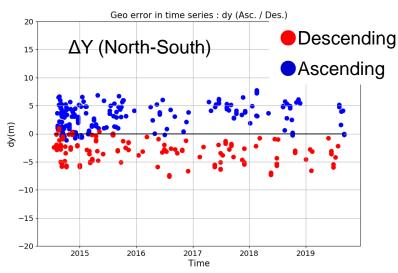
(for L1.5 and L2.1)

A = 32 dB

Radiometric accuracy evaluation.

Ave.= -82.97 dB, 1-sigma = 0.55 dB

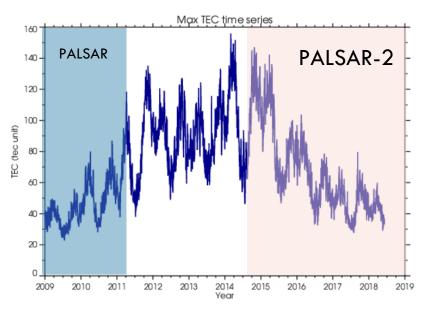

No. = 296 CRs


PALSAR-2 Geometric Calibration

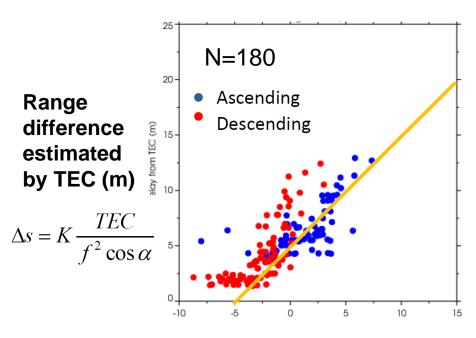
Differences between point target responses in SAR images and in-situ GPS measurements

	ΔΧ	(west-east)	[m]	ΔY (no			
Mode	mean (bias)	SD	RMS	mean (bias)	SD	RMS	n
Spotlight	-5.423	4.278	7.140	2.540	2.439	3.622	10
Stripmap 3 m (U2-6~9, U3-10~14)	-0.818	3.642	3.733	-1.139	3.979	4.140	165
Stripmap 6 m (FP6-3~7)	-4.741	3.723	6.046	3.193	2.151	3.863	103
Stripmap 10 m (F2-5~7)	-5.169	2.563	5.802	-0.055	2.637	2.637	72

(a) Geometric error in EW direction.



(b) Geometric error in NS direction.


Time trend of geometric accuracy (SM 3, 6, 10 m and Spotlight 1 m).

PALSAR-2 Geometric Calibration

Time series in global average TEC.

Geometric error in slant range (m).

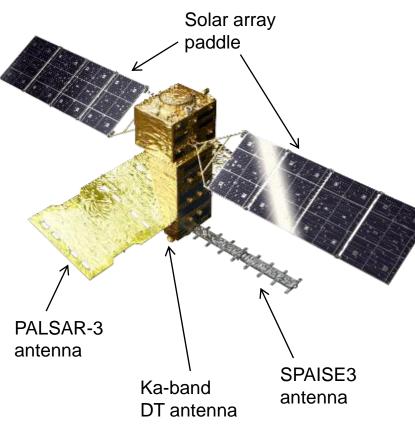

Ionosphere effects on geometric accuracy.

Advanced Optical Satellite: ALOS-3

Items		Specifications				
	Туре	Sun-synchronous sub-recurrent				
	Altitude	669 km at the equator				
Orbit	Local Sun Time	10:30 am +/- 15 minutes at the descending node				
	Revisit	35 days (Sub-cycle 3 days)				
Instrur	ments	Wide-swath and high-resolution optical imagerDual-frequencies Infrared sensor (hosted payload)				
Ground Sampling Distance (GSD)		Panchromatic band (Pa): 0.8 mMultispectral band (Mu): 3.2 m (6 bands)				
Quantization		11 bit / pixel				
Swath width		70 km at nadir				
Mission data rate		Approx. 4 Gbps (after onboard data compression: 1/4 (Pa) and 1/3 (Mu))				
Mission data downlink		Direct Transmission: Ka and X-bandvia. the Optical Data Relay Satellite				
Mass		Approx. 3 tons at launch				
Size		$5 \text{ m} \times 16 \text{ m} \times 3.5 \text{ m}$ on orbit				
Duty		10 mins / recurrent				
Design life time		Over 7 years				

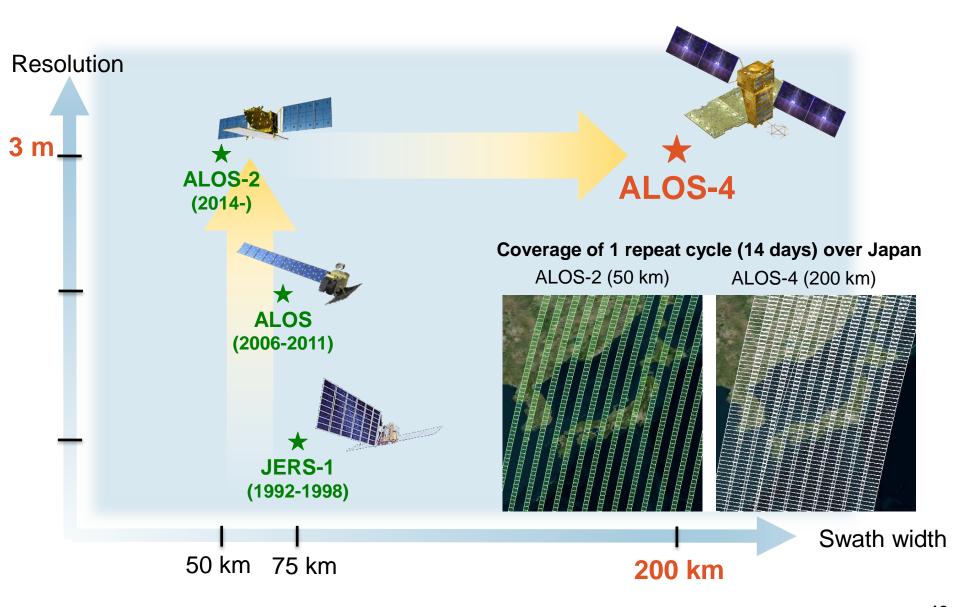
Phase D

Wide-swath and high-resolution optical imager

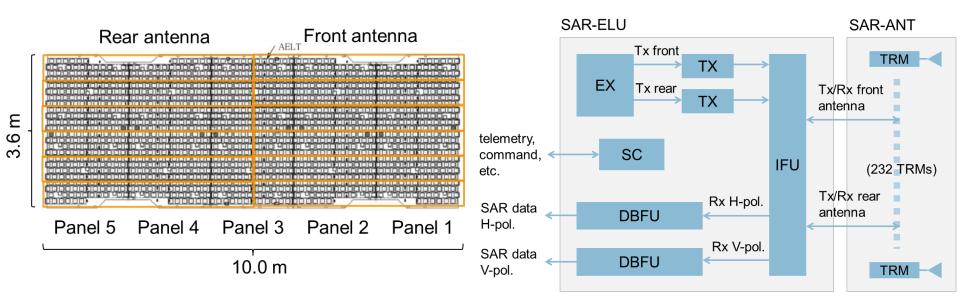

In-orbit configuration

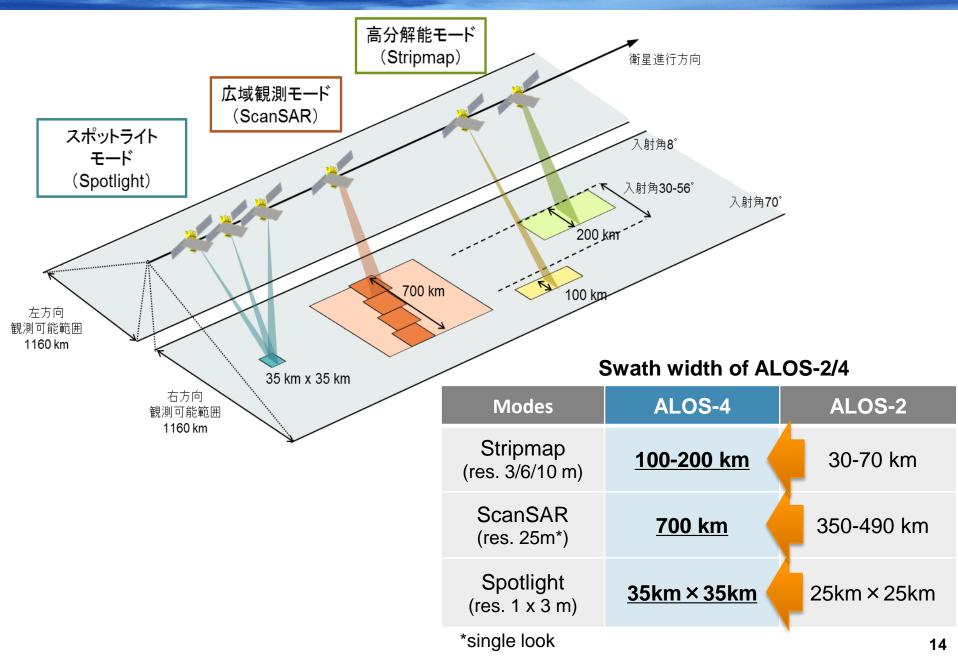
14:00-, Thu, 21 Nov, 2019 "Calibration of Future Missions"

Advanced SAR Satellite: ALOS-4


Phase D

Launch	JFY 2021
Orbit	Same orbit as ALOS-2 Sun-synchronous sub-recurrent orbit Altitude: 628 km Inclination angle: 97.9 degree Local sun time at descending: 12:00 ± 15 min. Revisit time: 14 day (15-3/14 rev/day)
Lifetime	7 years
Satellite Mass	Approx. 3 tons
Downlink	3.6 Gbps/1.8 Gbps (Ka-band)
Data recorder	1 TByte
Mission Instrument s	 PALSAR-3 (Phased Array type L-band Synthetic Aperture Radar-3) SPAISE3 (SPace based AIS Experiment 3)
Prime contractor	Mitsubishi Electric Corporation

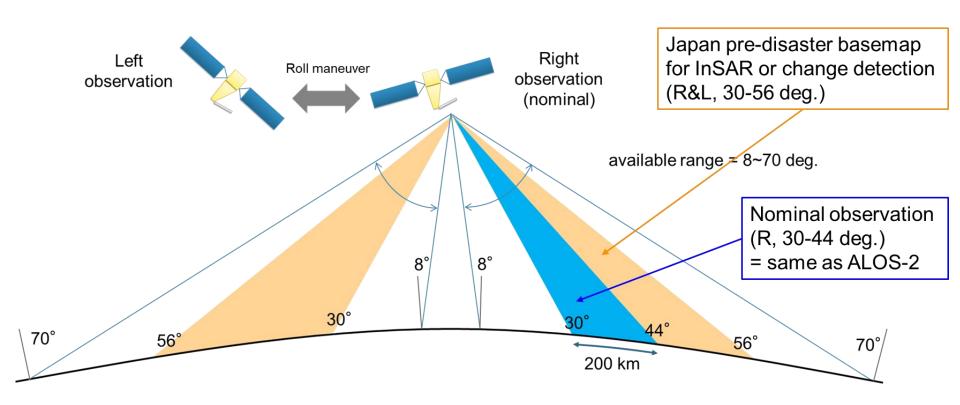

Improvements of L-band SARs


PALSAR-3 (Phased Array-type L-band SAR-3)

- 1. Onboard Digital Beam Forming (DBF) for 6 receiving channels in elevation
- 2. Azimuth multi-beam for 2 receiving channels in azimuth
- 3. Multiple Transmit Channel in azimuth (front and rear) Rx: 12 ch., Tx: 2 ch.
- 4. Phase spoiling for wide beam transmission in elevation

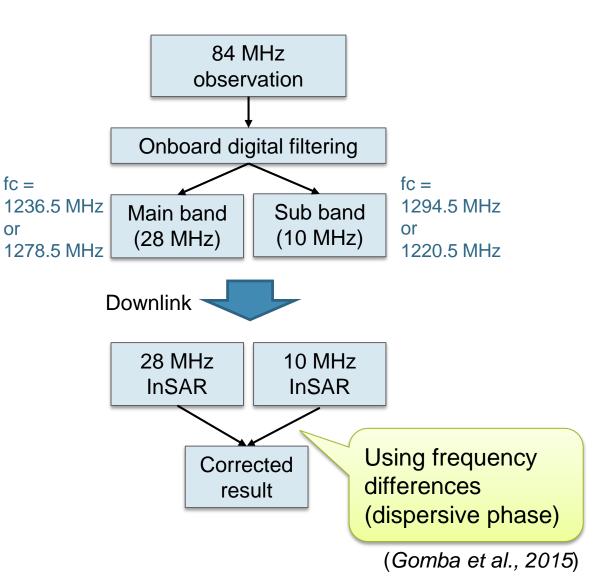
PALSAR-3 Observation Modes

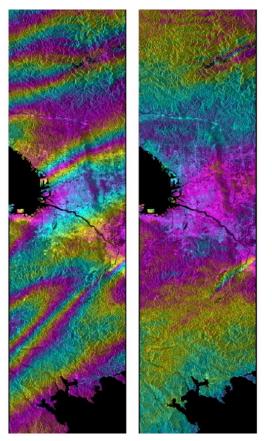
PALSAR-3 Observation Modes


SAR mode	Spotlight (sliding)	Stripmap						ScanSAR	
Center frequency [MHz]	1257.5	1257	1236.5 (or 1257.5/1278.5)				1236.5 (or 1257.5/ 1278.5)		
Bandwidth [MHz]	84	84	1	4	42 28 28+10				28
Resolution [m]	3 x 1 (Rg x Az)	3			6		10		25 (1 look)
Swath width [km]	35	200	100	200	100	200	100	200	700 (4 scans)
Polarization	1, 2	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2
Incidence angle range	8-70	30-56	8-70	30-56	8-70	29-56	8-70	29-42	8-70
NESZ [dB] *	< -20	< -2	<-20 <-24		< -28		< -24	< -20	
Range S/A [dB] *	> 15	> 15		> 15		> 20		> 20	> 15
Azimuth S/A [dB] *	> 15	> 15 > 15		15	> 20		> 20	> 15	
Pol. X-talk [dB] *	< -30	< -30					< -30		

^{*} Specifications for one observation swath including 37 deg. incidence angle.

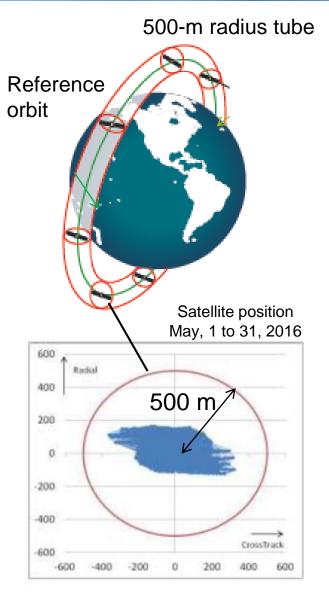
PALSAR-3 Basic Observation


- Regular stripmap mode observation is right-side, incidence angle of 30-44 deg. in 200 km swath.
- The other beams and left-side observation are used for quick disaster monitoring.



PALSAR-3 Ionospheric Correction

Onboard split-band for InSAR ionospheric correction


Test result of the InSAR ionospheric correction using PALSAR-2 data

Stripmap 3 m mode Master = 2015/2/25 Slave = 2016/6/1 Central Japan

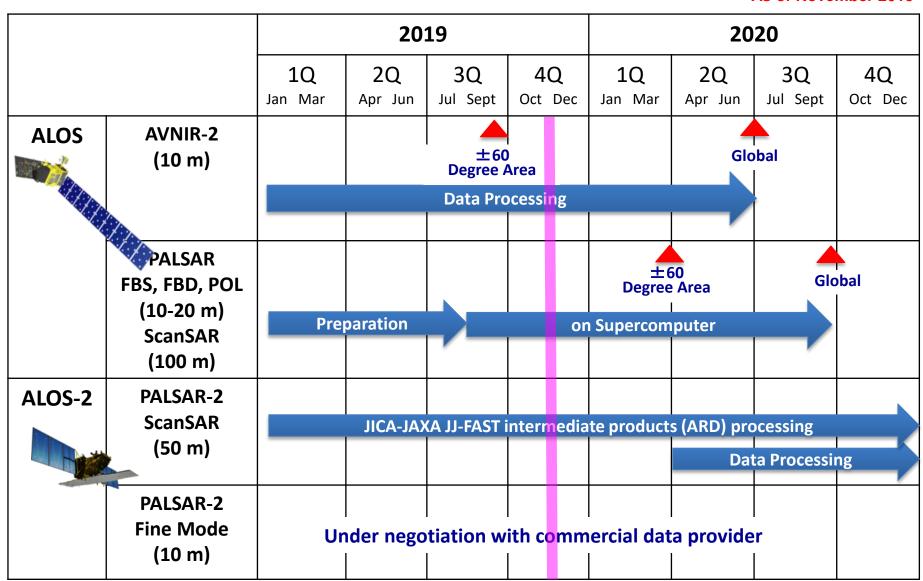
ALOS-4 Orbit Control

- ➤ The same orbit and observation geometry as ALOS-2
 - → ALOS-2/4 data can be used together.
- ➤ Orbit control is performed autonomously and its accuracy is within +/- 500 meters.
- Improved orbit determination accuracy by improvement of GPS signal reception and calibration using a laser reflector
 - ~3 m (RMS) for onboard orbit
 - ~0.1 m (RMS) for offline orbit

Orbit control of ALOS-2

JAXA's EO Data Distribution Policy

- Promote Open and Free
- Principle available spatial resolution
 - √ 10 meter resolution or coarser
- Enhance provision of available products on the internet
 - ◆ To be open upon processed ALOS/AVNIR-2 Global → ALOS PALSAR Global
 - **◆** G-Portal (Standard Products)
 - ◆ JJ-FAST, JASMES, JASMIN (for GFOI, GEOGLAM)
 - **◆** ARD or CARD4L compliant by format conversion software


JAXA's EO Data Open & Free Plan

Satellite/ Sen	sor	Before	NOW
MOS/JERS/ADEOS/ADEOS-2/ AMSR-E/TRMM		0	0
GOSAT		0	0
GCOM-W and GCOM-C		0	0
GPM		0	0
ALOS	AVNIR-2 (10m)	_	0
	PALSAR (10m, 100m)	_	0
	DSM (30m)	0	0
Annual Global Forest map / mosaic (25m)		0	0
ALOS-2	ScanSAR (50m)	_	Partially
	Fine mode (10m)	_	Under Negotiation with PD

ALOS/ALOS-2 Data Processing Schedule

As of November 2019

Summary

The operation status of ALOS-2 and the overview of ALOS-4 were introduced:

- 1. ALOS-2 is working well, and entering to post-operation phase,
- 2. The calibration results of PALSAR-2 was updated,
- 3. Due to hand over to ALOS-4 successfully, the duty cycle is reducing from 50 % to 30 % that has impact to BOS of ALOS-2,
- 4. The overviews of ALOS-4/PALSAR-3 were introduced, and the international Cal/Val and Science Team (CVST) is established based on the Earth Observation Research Announcement (EORA), and
- 5. The processing schedule for the open & free ALOS/ALOS-2 data explained.