

IDEAS-QAHE®

ADVANCED RETRIEVAL METHODS AND UNCERTAINTIES ESTIMATION FOR OCEAN COLOR PRODUCTS

Constant Mazeran (WP 2120) Francis Zagolski (WP 2155) sol√o France

Par **Bleu** technol • gies Quebec, Canada

Contemporal Contemporation Contempor

CONTEXT OF WP 2120 & 2155

- **R&D activity focusing on Ocean Color Radiometry** (OCR, i.e. water-leaving radiance from blue to NIR)
 - Primary satellite measurement used by oceanographers & modelers to derive bio-geophysical products
 - TOA signal corrected for atmospheric effects (absorption & scattering) and other potential contaminations (sky-dome, residual sun glint, white-caps, reflectance, adjacency effects in vicinity of land, ...)
- Limitations of standard algorithms for MERIS & OLCI, developed for ideal conditions:
 - Spectral range: Detection of aerosols in 2 NIR spectral bands + extrapolation to VIS bands
 - Spatial range: Processing performed sequentially on a pixel-basis, without accounting for information from surrounding pixels and potential spatial constraints
 - <u>Purely optical</u>: No synergy with other sensor missions (due to operational constraints) or external data (except for meteorology)

OC inverse problem very challenging in actual conditions (complex waters, Sun-glint, absorbing aerosols...) \Rightarrow Need to investigate more innovative approaches in term of signal processing

OVERALL ACTIVITY OF WORK-PACKAGE 2120 DURING PHASE 1

Multi-spectral inversion from VIS to NIR

- New non-linear aerosol spectral shape and inversion, to break ambiguity between aerosol and marine signal
- Development of a prototype OLCI processor. Further investigations with EUMETSAT "SACSO" project. ATBD v1 released in 2021

Multi-pixel inversion

 Extension of the Bright Pixel Atmospheric Correction code in multi-pixel. ATBD (v2) under completion for end of April 2022

Constraints with external information

- Generation of a synthetic DB of atmospheric scattering functions (ASF) with AERONET IOPs and CALIOP vertical profiles
- Cal/Val platform (with support from Telespazio): use-case demonstration for Ocean Colour
- Paper submitted (+ poster at Living Planet 2022): "Uncertainty of atmospheric scattering functions relevant for satellite ocean colour radiometry in European Seas"

MULTI-SPECTRAL INVERSION FROM VIS TO NIR

UNCERTAINTY PROPAGATION: STD VS NON-STD ATM. CORR.

- Standard Atmospheric Correction (MERIS/OLCI baseline AC)
 - Two bands in the NIR only to detect aerosol, then extrapolate to the VIS
 - Strong uncertainty propagation to the VIS: radiometric noise, possibly overcorrection (negative marine signal)...
 - Method not robust for actual remote-sensing conditions

- Alternative: Use a spectral model over the full spectrum for aerosol detection; no extrapolation
 - Introduce a coupled ocean-atmosphere problem, due to non-negligible marine signal in the VIS:

 $\rho_{Rc}^{mod}(\lambda_i, \mathbf{x}_a, \mathbf{x}_w) = \rho_a^{mod}(\lambda_i, \mathbf{x}_a) + t_{Ra}^{mod}(\lambda_i, \mathbf{x}_a) \rho_w^{mod}(\lambda_i, \mathbf{x}_w) \text{ with atmospheric and marine unknowns}$

Non-linear least-square (NLLSQ) minimisation well adapted to uncertainty formalism: input/output uncertainties:

$$\chi^2(\mathbf{x}_a, \mathbf{x}_w) = \frac{1}{n_{obs} - n_x} \sum_{i=1}^n \left(\frac{\rho_{Rc}^{mod}(\lambda_i, \mathbf{x}_a, \mathbf{x}_w) - \rho_{Rc}^{obs}(\lambda_i)}{\sigma(\lambda_i)} \right)^2$$

IDEAS-QA4EO CAL/VAL WORKSHOP #3 - 01.04.2022

WHICH SPECTRAL MODEL FOR THE AEROSOL?

- Standard approach with tabulated models (Gordon and Wang, 1994): complex modelling to get the aerosol mixing from NIR to VIS, impossibility to detect absorbing aerosols in the NIR, sensitivity to aerosol layer height...
- **POLYMER** (Steinmetz et al., 2011): $\rho_a^{mod}(\lambda) = c_0 * T(\lambda) + c_1 * \left(\frac{\lambda}{\lambda_0}\right)^{-1} + c_2 * \left(\frac{\lambda}{\lambda_0}\right)^{-4} \rightarrow \text{linear}$
- Simple power law (BPAC in the NIR): $\rho_a^{mod}(\lambda) = \rho_{a0} \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha} \rightarrow$ no multiple scattering effect
- Improved power law (QA4EO, 2014, tech note ESA/14/QWG/TN1): $\rho_a^{mod}(\lambda) = \rho_{a0} \frac{(1-\tau_R(\lambda))}{(1-\tau_{R0})} \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha}$
- Multiple Scattering Approximation (MSA) proposed to QA4EO & to EUMETSAT in recent "SACSO" study: $\rho_a^{mod} = \rho_{a0} * \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha} \left(\frac{1+k*\left(\frac{\lambda}{\lambda_0}\right)^{-\alpha}}{1+k}\right) \Rightarrow \text{ non-linear, robust over the whole VIS-NIR spectrum}$

PERFORMANCE OF MSA

IDEAS-QA4EO CAL/VAL WORKSHOP #3 - 01.04.2022

AMBIGUITY BETWEEN "LINEAR" ATM. MODEL AND OCEAN

Principal Component Analysis on marine spectra

Three linear components allow to construct very well the various marine spectra

1000

AMBIGUITY BETWEEN "LINEAR" ATM. MODEL AND OCEAN

Principal Component Analysis on marine spectra

Three linear components allow to construct very well the various marine spectra

• 2^{nd} component of the marine signal is very close to POLYMER λ^{-4} term

- "Linear" atmospheric model may absorb some marine components \rightarrow ambiguity
- Ideally, the eigenvectors of atmospheric and ocean linear decompositions should be orthogonal IDEAS-QA4EO CAL/VAL WORKSHOP #3 - 01.04.2022

INVERSION ERROR: LINEAR VS MSA MODEL

Par**Bleu** sol√o

MULTI-PIXEL INVERSION

.

STATE OF THE ART OF "MULTI-PIXEL" OC PROCESSOR

- All OC operational processors are single pixel based (true also for most of R&D processors)
- Principle: constrain the aerosol detection, with assumption on spatial smoothness

PROPOSED MULTI-PIXEL STRATEGY

- Rely on existing OC inverse algorithm \rightarrow experience, robustness
- Keep a local multi-pixel inversion (~ few km for OLCI)
- Keep bio-optical variability at pixel level & force spatial smoothness on aerosol
- Application to the Bright Pixel Correction (operational, new OLCI Collection 3)
 - Two atmospheric unknowns and one marine unknown: $\rho_{Rc}^{mod}(\lambda_i, \mathbf{x}_a, b_{bp0}) = \rho_a(\lambda_0) \left(\frac{\lambda}{\lambda_0}\right)^{\epsilon} + t_R^{mod}(\lambda_i) \rho_w^{mod}(\lambda_i, b_{bp0})$

Atmosphere (1st order smoothness)

Water

RESULTS OF MULTI-PIXEL BPC - RIO DE LA PLATA

RESULTS OF MULTI-PIXEL BPC – GIRONDE ESTUARY

SOME CONCLUSIONS ON MULTI-PIXEL INVERSION

- New framework for traditional OC algorithms
- Various assumptions can be easily implemented:
 - Fixed AOT and epsilon, AOT varying by pixel and fixed epsilon, AOT varying by pixel and smooth epsilon
- Need to carefully screen the macro-pixel: clouds, coastline, cosmic rays (South Atlantic Anomaly) ...
- Not totally conclusive for BPC, which is already very robust
 - Sharpening effect on heterogeneous area (front with complex waters)
 - Obviously not impacting homogeneous area
 - Care also about OLCI duplicated pixels!
- To be investigated for the full Clear Water AC
- To be assessed on match-ups

CWAC when fixing aerosol model

CONSTRAINT WITH CALIOP VERTICAL PROFILE

OVERALL PRINCIPLE

- Main motivations: aerosol vertical distribution impacts the coupling with Rayleigh
 - Assess uncertainty at a potential "OC System Vicarious Calibration" site at Lampedusa → EURYBIA^{*} proposal to EUMETSAT
 - 2. More generally, assess uncertainty of the current AC & improve performance with more constraints
- Principle: compare MERIS path reflectance and transmittance with reference data built from better aerosol knowledge + RTM
- AERONET data: $AOT(\lambda) + SSA(\lambda) + P_{aer}(\Theta, \lambda)$ at $\lambda = \{440, 675, 870\}$ nm
- CALIOP data: Vertical profiles of extinction coefficient profiles derived from total backscatter measurements at 532 & 1064 nm from a near-nadir-viewing geometry during both day and night phases of CALIPSO orbit
- CALIOP seasonal statistics: computed by CNR over 10 years (12/2006-11/2016) at Lampedusa

(*) Liberti, G.L., D'Alimonte, D., di Sarra, A., Mazeran, C., Voss, K., Yarbrough, M., Bozzano, R., Cavaleri, L., Colella, S., Cesarini, C., Kajiyama, T., Meloni, D., Pomaro, A., Volpe, G., Yang, C., Zagolski, F., Santoleri, R. (2020). European Radiometry Buoy and Infrastructure (EURYBIA): A Contribution to the Design of the European Copernicus Infrastructure for Ocean Colour System Vicarious Calibration. *Remote Sens.*, 12, 1178.

MERIS & OLCI STANDARD AEROSOL MODELS

- ⇒ 12 SAMs (Shettle & Fenn, 1979): Maritime, Coastal & Rural (RH=50, 70, 90, 99%)
- ⇒ 1 aerosol model spectrally white

⇒ 3 blue aerosol models including a spectral dependence extracted from an approach combining microphysical properties of small particles with IOP's derived from CIMEL radiometric measurements (Zagolski & Santer, 2010)

- Above 20 km: free aerosol layer
- Stratosphere [12–20]km: (optically fixed layer)
- Troposphere [2–12]km: Continental (optically fixed layer)
- Boundary layer [0–2]km: MAR, RUR, COA, BLUE (optically variable layer)

CALIOP VERTICAL PROFILE OF EXTINCTION COEFFICIENT @532 NM

Seasonal variation of vertical distribution of extinction coefficient @ 532nm collected with the CALIOP instrument for a period of 10 years (i.e., from December 2006 to November 2016) over Lampedusa.

CALIOP VERTICAL PROFILE OF EXTINCTION COEFFICIENT @532 NM

Seasonal variation of vertical distribution of extinction coefficient @ 532nm collected with the CALIOP instrument for a period of 10 years (i.e., from December 2006 to November 2016) over Lampedusa.

CALIOP VERTICAL PROFILE OF EXTINCTION COEFFICIENT @532 NM

Annual variation of vertical distribution of extinction coefficient @ 532nm collected with the CALIOP instrument for a period of 10 years over Lampedusa. Comparison between CALIOP vertical size distribution and a classical Junge's power model with exponential distribution (Ha=2km) over the Lampedusa site.

MERIS VS AERONET+CALIOP_ANN

Comparison between MERIS and computed ASFs with AERONET and 'ANN_mean' profile (CALIOP) over Lampedusa. MERIS L2 extractions are achieved for a window of (9 x 9) pixels in RR mode and filtered by 2 flags ('PCD_13' flag and AOT_865 < 0.15).

MERIS VS AERONET+CALIOP_ANN

RPD is computed between MERIS and computed ASFs with AERONET and 'ANN_mean' profile (CALIOP) over Lampedusa. MERIS L2 extractions are achieved for a window of (9 x 9) pixels in RR mode and filtered by 2 flags ('PCD_13' flag and AOT_865 < 0.15).

AERONET+CALIOP_ANN VS AERONET+CALIOP_DJF

RPD is computed between AERONET - ASFs calculated with 'ANN_mean' and 'DJF_mean' profiles (CALIOP) over Lampedusa. MERIS L2 extractions are achieved for a window of (9 x 9) pixels in RR mode and filtered by 2 flags ('PCD_13' flag and AOT_865 < 0.15).

AERONET+CALIOP_ANN VS AERONET+CALIOP_MAM

RPD is computed between AERONET - ASFs calculated with 'ANN_mean' and 'MAM_mean' profiles (CALIOP) over Lampedusa. MERIS L2 extractions are achieved for a window of (9 x 9) pixels in RR mode and filtered by 2 flags ('PCD_13' flag and AOT_865 < 0.15).

AERONET+CALIOP_ANN VS AERONET+CALIOP_JJA

RPD is computed between AERONET - ASFs calculated with 'ANN_mean' and 'JJA_mean' profiles (CALIOP) over Lampedusa. MERIS L2 extractions are achieved for a window of (9 x 9) pixels in RR mode and filtered by 2 flags ('PCD_13' flag and AOT_865 < 0.15).

AERONET+CALIOP_ANN VS AERONET+CALIOP_SON

RPD is computed between AERONET - ASFs calculated with 'ANN_mean' and 'SON_mean' profiles (CALIOP) over Lampedusa. MERIS L2 extractions are achieved for a window of (9 x 9) pixels in RR mode and filtered by 2 flags ('PCD_13' flag and AOT_865 < 0.15).

CONCLUSIONS ON AEROSOL PROFILE CONSTRAINT

- Not accounting for the real vertical distribution of aerosol in the lower atmospheric layers yields very large absolute relative errors in ASFs (beyond OC requirements of 5% <u>at sea level</u>):
 - Errors on ρ_{atm} : up to ~10 % (blue), ~30% (red), and ~80% (NIR)
 - Errors on T_{atm} : up to ~5 % (blue, red and NIR)
- Seasonal variability of aerosol vertical profile could be neglected:
 - \blacksquare Errors on $\rho_{\text{atm}}~:<$ 0.5% whatever the wavelength
 - Errors on T_{atm} : < 0.05% whatever for blue, red and NIR bands</p>

⇒ The CALIOP annual profile can be used as a first approximation

PLAN FOR PHASE 2

PLAN FOR IDEAS-QA4EO PHASE2 (WP 2120, 2155)

OCR processor consolidation Ι.

- Extend the MSA analytical approach to the aerosol transmittance, currently oversimplified (\leftarrow uncertainties) i.
- Further investigate the multi-pixel approach (full Atmospheric Correction chain, until the VIS) ii.
- iii. Implement CALIOP climatology in standard AC, assess performance

Π. Validation of OLCI AC and AC uncertainties: prototype tool using the IDEAS-QA4EO Cal/Val platform

THANK YOU

IDEAS-QAHE®

IDEAS-QA4EO CAL/VAL WORKSHOP #3 - 01.04.2022