

Spectral Band Adjustment Factor (SBAF), Methods and Processing

IDEAS-QA4EO Cal/Val WS #3 March 31 - April 1st ,2022

Project Description

Scope of the study

• The scope of this QA4EO R&D study is the analysis of Spectral Band Difference Effects (SBDE).

Final objective

• To develop a tool dedicated to SBDE analysis and shared with community (https://earthconsole.eu/discover)

Interests

- Data calibration / validation domain: improved cross calibration analysis
- Data application domain: anticipate error when comparing NDVI from different sources
- Data processing domain: Validation of Spectral band adjustment approach

Schedule

• May 1st 2022 – April 30 2023

Projects deliverables

Technical Note / Code / Database

RD 1) Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric crosscalibration between satellite sensors in the solar-reflective spectral domain. Remote Sensing of Environment 2007, 110, 393-409. RD 2) Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral imageprocessing system (sips) - interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment 1993, 44, 145-163.

RSR and Spectrum Convolutions

• The simulated surface reflectance of a satellite sensor is obtained by weighting the **hyperspectral surface reflectance** with the relative spectral responses (RSR) and integrating over the satellite sensor bandpass.

+

1750 2000 2250

-0.5

-1.0

500

750 1000

1250 1500

wy (nm)

Example of green spectral band Relative Spectral Responses (RSRs) for 14 sensors, categorized in three groups: (a) wide bandwidth, (b) medium bandwidth, (c) narrow bandwidth.

 Considering two sensors: Band pass adjustment technic is used to estimate Spectral Band Adjustment Factors ...

Band Pass Adj technics (Linear): Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (sbaf) for crosscalibration. IEEE Transactions on Geoscience and Remote Sensing 2013, 51, 1267-1281.

SBAF Correction – Sen2Like

- For a given Sentinel-2 (S2B-MSI) / Landsat 8/9 satellites (OLI) Image, select slop and intercept parameter values, Apply rescaling as follows:
- $\rho_{MSI,\lambda}^{Adj} = c(\lambda) \times \rho_{MSI,\lambda}^{Brdf} + o(\lambda)$
- Where:
 - $\rho_{MSL\lambda}^{Adj}$ is the adjusted MSI reflectance;
 - $c(\lambda), o(\lambda)$ are the linear transformation parameter, slope, intercept (SBAF Coefficient);
 - $\rho_{MSL\lambda}^{Brdf}$ is the BRDF Adjusted reflectance;

			Sentinel-2A		Sentinel-2B	
HLS Band	OLI band	MSI band	Slope (a)	Intercept (b)	Slope (a)	Intercept (b)
name	number	number				
CA	1	1	0.9959	-0.0002	0.9959	-0.0002
BLUE	2	2	0.9778	-0.004	0.9778	-0.004
GREEN	3	3	1.0053	-0.0009	1.0075	-0.0008
RED	4	4	0.9765	0.0009	0.9761	0.001
NIR1	5	8A	0.9983	-0.0001	0.9966	0.000
SWIR1	6	11	0.9987	-0.0011	1.000	-0.0003
SWIR2	7	12	1.003	-0.0012	0.9867	0.0004

S. Skakun, J. Ju, M. Claverie, J.C Roger, E. Vermote, B. Franch, J.L Dungan and J. Masek. Harmonized Landsat Sentinel-2 (HLS) Product User's Guide. Version 1.4, October 2018. <u>https://hls.gsfc.nasa.gov/wp-content/uploads/2018/10/HLS.v1.4.UserGuide_draft_ver3.0_clean.pdf</u>

於

SBAF Correction & absolute calibration (LS8 / S2)

- PICSCAR CEOS initiative
- Considering the Libya 4 site, cross calibration has been done.
- The table below (Rho_OLI / Rho_MSI) shows a comparison between gain from HLS and gain from cross calibration. Results are consistent, main differences exist for the blue band (above 1 %).

Band		(L1 TOA)	Slope given in	Slope given in	Barsi SBAF
	(L1 TOA)	MODIS BRDF	NASA / HLS	, (Clavery	(2018)
			guide	2018)	L4, [RD 4]
			v 1,4, [RD 3]	[RD 5]	
BLUE	1,0310	0,96734	0,9778	0,9770	0,9640
GREEN	0,9943	1,003	1,0060	1,0050	1,0030
RED	1,0279	0,96879	0,9765	0,9820	0,9660
NIR20	1,0030	0,99131	0,9983	1,0010	0,9960
SWIR1	1,0003	0,9929	0,9987	1,0010	0,9990
SWIR2	0,9925	1,0025	1,0030	0,9960	0,9980

With BRDF Correction - Threshold 1 degree (3 / 54 products)

- [RD 3] S. Skakun, J. Ju, M. Claverie, J.C Roger, E. Vermote, B. Franch, J.L Dungan and J. Masek. Harmonized Landsat Sentinel-2 (HLS) Product User's Guide. Version 1.4, October 2018.¹
- [RD 4] J. Barsi, B. Alhammoud, J. Czapla-Myers, Ferran-Gascon, Md. Obaidul Hague and al (2018). Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. <u>https://doi.org/10.1080/22797254.2018.1507613</u>
- [RD 5] M. Claverie, Junchang Ju, Jeffrey G. Masek, Jennifer L. Dungan, Eric F. Vermote, Jean-Claude Roger, Sergii V. Skakun, Christopher Justice, The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sensing of Environment, Volume 219, 2018, Pages 145-161, ISSN 0034-4257, <u>https://doi.org/10.1016/j.rse.2018.09.002</u>.

Assets

Database

- Hyperion scenes were selected for each band of latitude (10° width, from -50° to +60°) by choosing one scene per latitude band with a "0 to 9% Cloud Cover" assigned in the metadata for each of the 17 biome types as defined in the IGBP (International Geosphere Biosphere Program) land cover map
- Atmospheric correction of Hyperion scenes (6s & MODIS CMG)
- For each scene, a Principal Components Analysis (PCA) performed on the SR data.
- An unsupervised k-means classifier run on each scene using the PCA coefficients accounting for 99% of the variance.
- The centroid spectra of each class identified
- The Hyperion spectra data set thus includes 10,000 spectra corresponding to 10,000 georeferenced pixels.

6

Application of the database (Modis / OLI)

• SBAF Computation with different methodologies (Linear, Adaptive, Machine Learning)

The distribution of the differences between simulated OLI reflectance and simulated **MODIS reflectance adjusted to OLI bandpass** using the Hyperion data set

*

WP Work

- Select 5 / 8 sensors (with customer), collect RSRs and related specifications,
- Set up processing code for adaptive SBAF (including three distance functions),
- For all mission twins, analyze variability of SBAF (ANOVA) depending on :
 - The input spectrum class (CCI Class)
 - RSR difference index
- <u>Compare with results from NASA SatCORPS SBAF Tool, NASA-LaRC CERES (GSICS):</u>
 <u>https://www-pm.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=SBAF</u>
- Share database & code
- Prepare application oriented documentation & input for a user tool

禿

WP Work

- First analysis with CCI (Level 1 (or global) and regional legends of the CCI-LC maps)
- Add CCI info / metadata to hyperion spectra

Hyperion image name	E01H0010742010153110K0
×	1143
X	585
latitude	-4.06525
longitude	-42.2476
band wavelength	[426.82, 436.99, 447.17, 457.34, 467.52, 477.6
Spectrum	[0.011, 0.026, 0.0175, 0.0177, 0.0246, 0.0379
CCI Class	120
CCI_Class_qaf_1	1
CCI_Class_qaf_2	1
CCI_Class_qaf_3	132
CCI_Class_qaf_4	0

10

THANK **YOU** FOR YOUR ATTENTION

telespazio.co.uk