

UAV-BASED OBSERVATIONS FOR BRDF ESTIMATION

IDEAS-QA4EO Cal/Val Workshop#3

Daniele Latini – Ilaria Petracca – Fabio Del frate

daniele.latini@geo-k.co

SUMMARY

GEO-K is responsible for WP 2175 which focuses on the **estimation of BRDF** by UAS platform.

More in general, this activities aims to establish an UAV flight protocol for collecting **reference in-situ dataset** to assess the quality of BRDF correction algorithms.

- Set-up of a system composed by UAV + Multispectral camera S2 likes
- > Design of flight plan on selected test sites
- Elaboration of multiangular dataset
- Evaluation and modelling of BRDF using Ross-Li model

System Set-up

UAV-BASED OBSERVATIONS FOR BRDF ESTIMATION

UAV + Multispectral sensor S2 likes

- 9 CMOS sensor with global shutter
- GSD: 4cm at 75m flight altitude
- FOV: 47m x 36 m at 75m flight altitude
- Size and weight 10 x 13 x 4,6 cm, 470 g

- Hexarotor MTOM up to 6 kg
- Up to 20 minutes of flight time
- Automatic flight capabilities, controlled gimbal for orienting MAIA camera between 0° and 90° respect to surface normal direction

The **Incident Light Sensor (ILS)** measures the level of the downwelling light in each band. ILS **provides irradiance data at the exact time of shooting for each image and spectral band**, substantially improving the accuracy of radiometric correction.

31/03/2022

Multispectral Camera Sentinel-2 likes

Technical Features						
Sensors	9 CMOS sensor 1.2Mpix (1280x960) with global shutter					
Acquisition	Single shot or continuous up to 5fps					
Image Format	Multi-layer/multi-band RAW 8 - 10 - 12bits per pixel; TIFF					
File Size	from 10.7 to 21.2MB depending on the format					
Internal Storage	210GB internal storage					
Size and weight	99 x 129 x 46 mm³, 470 g					

Distanza dal suolo (m)	GSD (mm/pixel)	FOV (m²)		
50	23	30 x 23		
75	35	45 x 34		
100	47	60 x 45		
150	70	90 x 68		

MAIA SN-2 BANDS				Central wavelength			
	Band (nm)	Name	Sentinel-2 bands	μm)			
	433-453	Violet (Coastal)	Band 1 – Coastal aerosol		0.443		
	457-523	Blue	Band 2 – Blue Band 3 – Green		0.490		
	542-578	Green	Band 4 – Red Band 5 – Vegetation red edge		0.665 0.705		
	650-680	Red	Band 6 – Vegetation red edge		0.740		
	697-713	Red Edge 1	Band 7 – Vegetation red edge Band 8 – NIR		0.783 0.842		
	732-748	Red Edge 2	Band 8A – Vegetation red		0.865		
	773-793	NIR1	Band 9 – Water vapour		0.945		
	784-900	NIR2	Band 10 – SWIR – Cirrius Band 11 – SWIR		1.375 1.610		
	855-875	NIR3	Band 12 – SWIR		2.190		

31/03/2022 - 5

Flight Planning

View Azimuth Angle (VAA) variation

View Zenith Angle (VZA) variation

GEO-K

Flight Planning and Dataset Elaboration: Vegetation Surface

the second second

Flight Planning – Veg. Test site

- Acquisition details:
 - View Azimuth Angles:
 0° to 360° with 30° steps
 - View Zenith Angles:
 0° to 60° with 10° steps
 - Dataset amount:

84 acquisition each survey

- More info:
 - Flight time about 15min
 - Flight altitude: 120m
 - Overlapping Sentinel-2 passage (30/04/2021)

On ground picture: Wheat Field 31/03/2022 - 8

MAIA Field Measurements – Evaluation of BRDF

GEO-K

BRDF Modeling: Ross-Li model

Inversion of the model using least squared method

BRDF Comparison: Measured vs Model

31/03/2022 - 11

Flight Planning and Dataset Elaboration: Asphalt

the second second

Flight Planning – Asphalt Test site

1 St 1 6

Flight Planning – Asphalt Test site

MAIA Field Measurements – Evaluation of BRDF

GEO-K

BRDF Comparison: Measured vs Model

BRDF model parameters: Sensitivity and Statistical analysis

UAV-BASED OBSERVATIONS FOR BRDF ESTIMATION

Sensitivity of Ross-Li Parameters to Surfaces and Bands

Random Uncertainty - RossLi

	MAIA Band	RMSE	CORRcoeff	f1 - f _{iso}	Confidence Interval - f1	f2 - f _{vol}	Confidence Interval - f2	f3 - f _{geo}	Confidence Interval - f3
	Band2490nm	0.004	0.933	0.044	0.046 - 0.042	0.098	0.109 - 0.087	0.004	0.006 - 0.002
	Band3560nm	0.007	0.891	0.087	0.091 - 0.083	0.181	0.204 - 0.159	-0.003	0.0010.007
	Band4665nm	0.005	0.913	0.062	0.065 - 0.059	0.075	0.091 - 0.059	0.015	0.018 - 0.013
Vogotation	Band5705nm	0.009	0.859	0.12	0.125 - 0.115	0.184	0.213 - 0.155	0.002	0.0070.004
vegetation	Band6740nm	0.024	0.829	0.256	0.269 - 0.242	0.5	0.577 - 0.423	-0.067	-0.0530.081
	Band7783nm	0.032	0.813	0.298	0.315 - 0.28	0.563	0.663 - 0.462	-0.098	-0.080.116
	Band8842nm	0.031	0.802	0.308	0.326 - 0.291	0.536	0.634 - 0.438	-0.09	-0.0720.108
	Band9865nm	0.033	0.787	0.364	0.382 - 0.345	0.561	0.666 - 0.457	-0.087	-0.0680.106
	Band1443nm	0.012	0.848	0.168	0.176 - 0.16	0.114	0.143 - 0.085	0.017	0.024 - 0.01
	Band2490nm	0.014	0.83	0.17	0.179 - 0.161	0.123	0.157 - 0.088	0.019	0.027 - 0.011
	Band3560nm	0.014	0.853	0.194	0.203 - 0.185	0.128	0.162 - 0.094	0.022	0.03 - 0.014
	Band4665nm	0.014	0.863	0.214	0.223 - 0.205	0.123	0.157 - 0.089	0.026	0.034 - 0.018
Asphalt	Band5705nm	0.012	0.862	0.194	0.202 - 0.186	0.108	0.139 - 0.077	0.024	0.031 - 0.017
	Band6740nm	0.012	0.867	0.199	0.207 - 0.191	0.112	0.143 - 0.081	0.025	0.032 - 0.017
	Band7783nm	0.012	0.874	0.211	0.219 - 0.203	0.112	0.141 - 0.082	0.024	0.031 - 0.017
	Band8842nm	0.011	0.884	0.214	0.221 - 0.206	0.108	0.137 - 0.08	0.025	0.032 - 0.019
	Band9865nm	0.013	0.887	0.241	0.25 - 0.233	0.113	0.145 - 0.082	0.03	0.038 - 0.023

CASH AND AND AND

31/03/2022 - 19

Comparison with RossLi Parameters from literature

Table 2 The f_{iso} , f_{vol} , and f_{geo} of the RossThick–LiSparse model for the WFI sensor.

	Band	f _{iso}	f _{vol}	f _{geo}
CoverType: <mark>Bare soil</mark>	Band1	0.1936	0.1193	0.0199
	Band2 Band3	0.2323	0.1331	0.0258
		0.2566	0.1373	0.0298
	Band4	0.2656	0.1308	0.0322

Pan, Z., Zhang, H., Min, X., & Xu, Z. (2020). Vicarious calibration correction of large FOV sensor using BRDF model based on UAV angular spectrum measurements. Journal of Applied Remote Sensing, 14(2), 027501.

					RossLi				
Band	CoverType	RMSE	CORRcoeff_RL	f1 - fiso	Confidence Interval - f1	f2 - fvol	Confidence Interval - f2	f3 - fgeo	Confidence Interval - f3
Band2490nm	Vegetation	0.004	0.933	0.044	0.046 - 0.042	0.098	0.109 - 0.087	0.004	0.006 - 0.002
Band3560nm	Vegetation	0.007	0.891	0.087	0.091 - 0.083	0.181	0.204 - 0.159	-0.003	0.0010.007
Band4665nm	Vegetation	0.005	0.913	0.062	0.065 - 0.059	0.075	0.091 - 0.059	0.015	0.018 - 0.013
Band8842nm	Vegetation	0.031	0.802	0.308	0.326 - 0.291	0.536	0.634 - 0.438	-0.09	-0.0720.108
Band2490nm	Asphalt	0.014	0.83	0.17	0.179 - 0.161	0.123	0.157 - 0.088	0.019	0.027 - 0.011
Band3560nm	<mark>Asphalt</mark>	0.014	0.853	0.194	0.203 - 0.185	0.128	0.162 - 0.094	0.022	0.03 - 0.014
Band4665nm	<mark>Asphalt</mark>	0.014	0.863	0.214	0.223 - 0.205	0.123	0.157 - 0.089	0.026	0.034 - 0.018
Band8842nm	<mark>Asphalt</mark>	0.011	0.884	0.214	0.221 - 0.206	0.108	0.137 - 0.08	0.025	0.032 - 0.019

Conclusions

- Develop of an automatic and repeatable flight plan for acquiring multi-angular UAV dataset using a multispectral camera Sentinel-2 likes.
- > Planning and execution of automatic and repeatable UAV surveys over different landcover types.
- > Dataset processed and applied for the estimation of BRDF parameters of Ross-Li linear model.
- > Sensitivity and statistical analyses of BRDF parameters have been carried out.
- > Participation to SRIX4VEG initiative in Barrax (ES) planned in July 2022.
- > Extension of the activities to second phase of QA4EO.

Thanks

daniele.latini@geo-k.co