PGN products quantitative uncertainty

Martin Tiefengraber Karin Kreher <u>Alexander Cede</u> Manuel Gebetsberger Moritz Müller LuftBlick LuftBlick LuftBlick LuftBlick LuftBlick

_ICK

Goal of this QA4E0 WP2126

Optimize the uncertainty reported in the PGN trace gas products

with support of UK NPL (Pieter De Vis & Emma Woolliams)

118 Cabauw

30 Juelich

54 Seoul

61 AldineTX 168 BlacksburgVA* 20 Busan 120 Davos 122 FortMcKay 121 Innsbruck-FKS* 56 MaunaLoaHI 187 PittsburghPA 164 Seosan 193 Tsukuba 161 Xianghe * more than one instrument 65 Altzomoni* 189 Anmyeon 155 BostonMA 57 BoulderCO 26 CambridgeMA* 39 DearbornMI 104 Downsview* 23 FourCornersNM 199 Fukuoka 167 KenoshaWI 142 MexicoCity-UNAM 157 MexicoCity-Vallejo 53 Potchefstroom* 55 QueensNY 149 Seoul-SNU 176 Tsukuba-NIES 163 Tsukuba-NIES-West 146 Yokosuka 191 Yongin

119 Athens-NOA 204 BoulderCO-NCAR 184 CapeElizabethME 185 EastProvidenceRI 59 GreenbeltMD* 198 Kobe 34 MountainViewCA 138 Rome-IIA 126 ShipSonne2 136 Hefei*

173 AtlantaGA* 21 Bremen 70 ChapelHillNC 169 Eabert 37 HamptonVA 11 LaPorteTX* 197 Nagoya 115 Rome-ISAC 109 StGeorge 150 Ulsan

190 Bangkok 134 BristolPA 31 CharlesCitvVA 144 Eureka-PEARL 156 HamptonVA-HU 183 LondonderryNH 69 NewBrunswickN 117 Rome-SAP 123 StonyPlain 159 Wakkerstroom

20	Dayonnei	
112	Broadmeadows	
67	Cologne	
174	FairbanksAK	
105	Helsinki	
153	LynnMA	
64	NewHavenCT	
147	SWDetroitMI	
182	Tel-Aviv	
40	WallopsIslandVA	

1/2 Beijing*
180 BronxNY
124 ComodoroRivada
60 Fajardo
66 HuntsvilleAL
186 MadisonCT
152 NyAlesund
181 SanJoseCA
194 Tokyo-TMU
140 WashingtonDC

	171 Beijing-RADI
	162 Brussels-Uccle
vadavia	125 Cordoba
	102 Fang
	201 Incheon-ESC
	178 ManhattanKS
	51 OldFieldNY
	46 SaoTome*
	145 Toronto-Scarborough
DC	177 WestportCT

132 Berlin 111 Bucharest 36 Dakar 35 ForestParkMO 110 Innsbruck 135 ManhattanNY-CCNY 166 PhiladelphiaPA 196 Sapporo* 108 Toronto-West 68 WrightwoodCA

🛞 Basic equation for total vertical column data

 \rightarrow While this component is not explicitly included in processor, it will partially captured by the "Structured-discrepancy" uncertainty output, which is planned for v1.9

\rightarrow No plans to include this uncertainty yet

S Effective gas temperature

S Algorithm error

 \rightarrow While this component is not explicitly included in processor yet, it will partially captured by the "Structured-discrepancy" uncertainty output, which is planned for v1.9

 \rightarrow Evaluated for NO2 total columns using simulations

→ Impact of trace gas columns and aerosols on NO2 data negligible

 \rightarrow This does not necessarily need to be the same for other products (e.g. HCHO, SO2)

S Discrepancy error

1

S Discrepancy error possible reasons

- 1. The reference is not taken from the instrument itself (extraterrestrial spectrum from literature).
- 2. Different optics have been used, e.g. when the reference obtained from direct sun data is used for direct moon or sky radiance measurements.
- 3. Instrumental changes, either long term ("sensitivity drift" from optical degradation) or short term ("unwanted spectral signal" arising from pointing inaccuracies, dirty entrance window, etc.).
- \rightarrow 1 and 2 would cause an additional contribution to the common uncertainty.

 \rightarrow The combination of all these effects is planned to be quantified in v1.9 as "Structured-discrepancy uncertainty" U_{SD}. The reason it is "structured" is that we cannot separate the short-term effects from the common effects.

 \rightarrow We will make use of the weighted RMS (wrms) of the residuals to quantify this uncertainty:

$$U_{SD}(X_j) = U_I(X_j) \cdot \sqrt{\left(\frac{wrms}{wrmse}\right)^2 - 1}$$

S Discrepancy error simulations

 \rightarrow Used "structured noise" to simulate the discrepancy error

 \rightarrow We believe that the simulated errors agree with what we observe in the measurements

S Field calibration uncertainty

S Effective height

S PGN Uncertainty All Components

Retrieving NO2 columns using an extraterrestrial (ET) reference instead of the "usual" synthetic reference

🛞 Residual NO2 absorption features in reference spectra?

Here:

"SUSIM"= Kurucz+SUSIM

"Groebner"= Kurucz+Gröbner

🛞 Residual NO2 absorption features in reference spectra

Spectral residual comparison (400-470,4,0,0,-1)

The difference in the ET spectra causes a difference in the retrieved NO2.

 \rightarrow We suspect a residual NO2 column amount included in both ET spectra, which makes sense since both state that they have not been corrected for NO2.

③ Difference total NO2 using ext. reference to operational NO2

The difference to the "true" NO2 column amount is a combination of:

- NO2 column in ET spectrum
- Discrepancy error specific to each instrument

There seems to be a cluster around 1e-4mol/m2~0.22DU

🛞 Practical use of ET retrieval

A time series of the differences shows some SZA effects ("outliers" at high SZAs), but more importantly can reveal changes of the instrument sensitivity.

 \rightarrow ET retrieval "jumps" when the instrument changes \rightarrow Operational retrieval introduces a new "validity period" to be correct

- Several new uncertainty components have been introduced in processor version v1.8.
- The so-called algorithm and discrepancy errors were simulated and analyzed for NO2 columns:
 - The algorithm error is negligible. This does not necessarily need to be the same for other products (e.g. HCHO, SO2)
 - The discrepancy error is significant. It will be included in v1.9.
- NO2 retrievals using ET spectra from literature differ from the truth for two reasons:
 - We believe the ET spectra include NO2.
 - Each instrument has its own specific discrepancy error
- NO2 retrievals using ET spectra are a very useful tool to track the instrument stability.

