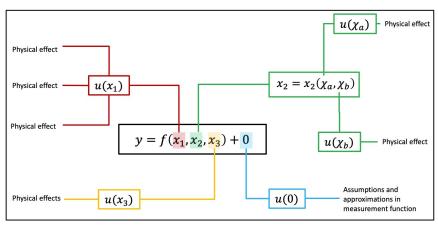


Community Tools for Metrology QA4EO Cal/Val Workshop #3

Sam Hunt & Pieter De Vis

Why do we care about error-correlation?



Uncertainty Analysis

- In full error-covariance matrices are impractical to evaluate and store for EO data
- "FIDUCEO-style" approach to uncertainty analysis offers a solution by parameterising errorcovariance structure
- How to take this to the next step? How do I store and make use of this information in data?

Uncertainty Tree Diagram

		Comments			
Name of effect Affected term in measurement function Instruments in the series affected		A unique name Name and standard symbol List names			
			Correlation type and form	Pixel-to-pixel [pixels] from scanline to scanline [scanlines]	From a set of defined correlation forms
				between images [images] Between orbits [orbit]	
Correlation scale	Over time [time] Pixel-to-pixel [pixels]	As needed to define type			
	from scanline to scanline [scanlines]	As fiedded to define type			
	between images [images]	_			
	Between orbits [orbit] Over time [time]				
Channels/bands	List of channels / bands affected	Channel names			
	Error correlation coefficient matrix	A matrix			
Uncertainty	PDF shape	Functional form			
	units magnitude	Units			
Sensitivity coefficient		Value, equation or parameterisation of sensitivity of measurand to term			

Fffect Table

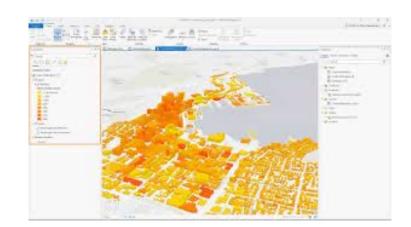
Geospatial data is encoded with complex metadata, though users typically never have to interact with it.

Geospatial data is encoded with complex metadata, though users typically never have to interact with it.

Example: Geocoding

- Data is accompanied with standardised metadata
- 2. Tools provide means to

- A. Interface with this information
- Interpret and make use of this information



Geospatial data is encoded with complex metadata, though users typically never have to interact with it.

Why not take the same approach for errorcovariance information for observations?

Geospatial data is encoded with complex metadata, though users typically never have to interact with it.

Parallel: Error-covariance encoding

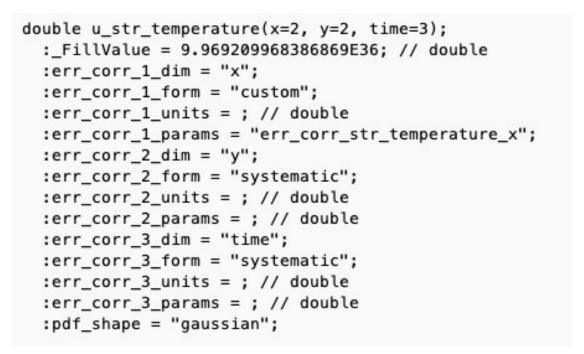
- 1. Data is accompanied with standardised metadata
- 2. Tools provide means to

Fduceo

- A. Interface with this information
- B. Interpret and make use of this information

obsarray punpy

e.g. Uncertainty propagation



Standardised Error-Covariance Metadata: Digital Effects Tables

		Comments
Name of effect		A unique name
Affected term in measurement function Instruments in the series affected		Name and standard symbol List names
from scanline to scanline [scanlines]		
between images [images]		
Between orbits [orbit]		
Over time [time]		
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type
	from scanline to scanline [scanlines]	
	between images [images]	
	Between orbits [orbit]	
	Over time [time]	
Channels/band s	List of channels / bands affected	Channel names
	Error correlation coefficient matrix	A matrix
Uncertainty	PDF shape	Functional form
	units	Units
	magnitude	
Sensitivity coefficient		Value, equation or parameterisation of sensitivity of measurand to term

Print out of uncertainty variable attributes for netCDF file

Digital Effects Table

Interface to Error-Covariance Metadata: obsarray

The *obsarray* python module provides an extension to the widely used *xarray* package to interface with measurement error-covariance information encoded in datasets

Interface to Error-Covariance Metadata: obsarray

The *obsarray* python module provides an extension to the widely used *xarray* package to interface with measurement error-covariance information encoded in datasets

```
# Inspect uncertainty variables for a particular variable

print(ds.unc["temperature"])

<VariableUncertainty>
Variable Uncertainties: 'temperature'
Data variables:
    u_ran_temperature (x, y, time) float64 0.8485 0.2402 ... 0.9054 0.5799
    u_str_temperature (x, y, time) float64 0.5091 0.1441 ... 0.5432 0.3479
    u_sys_temperature (x, y, time) float64 0.5091 0.1441 ... 0.5432 0.3479
```


Interface to Error-Covariance Metadata: obsarray

The *obsarray* python module provides an extension to the widely used *xarray* package to interface with measurement error-covariance information encoded in datasets

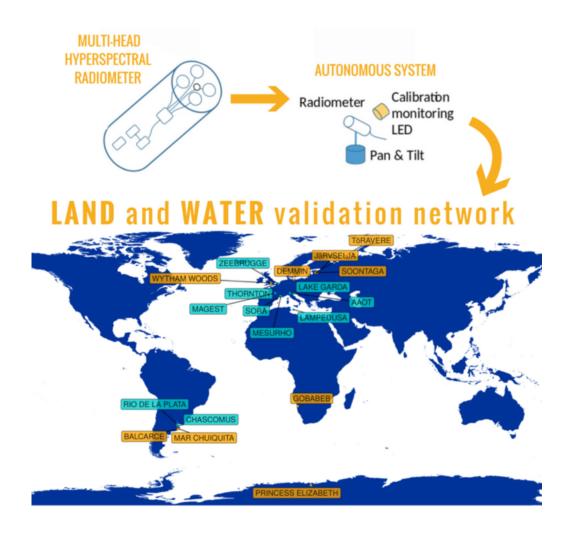
Tools for Error-Covariance Metadata: punpy

punpy interfaces with obsarray to make uncertainty propagation as efficient and easy to use as possible. All flexibility of punpy is included as optional keywords. The propagate_ds() function returns an obsarray dataset with combined random, systematic and structured uncertainties on measurand.

```
# Define your measurement function inside a subclass of MeasurementFunction
class GasLaw(MeasurementFunction):
    def function(self, pres, temp):
        return pres/(temp*8.134)

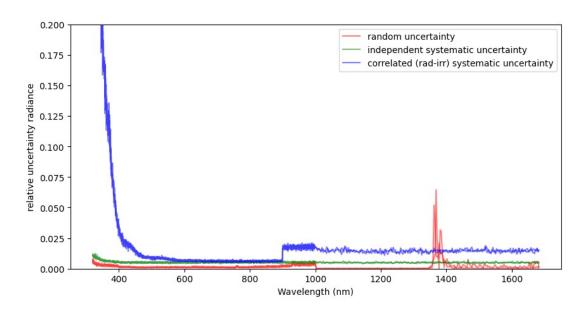
# create class object and pass all optional keywords for punpy
gl = GasLaw(["pressure","temperature"],steps=100000)

# propagate the uncertainties on the input quantities in ds to measurand uncertainties in ds_y
ds_y=gl.propagate_ds("V/n",ds)
```

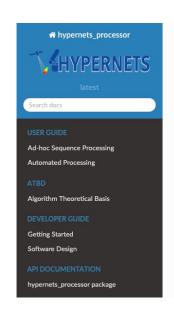
Example: Hypernets Ground Processor

 Hypernets is an underdevelopment network of ground test sites with automated hyperspectral spectrometers for surface reflectance validation



Example: Hypernets Ground Processor

- Hypernets is an underdevelopment network of ground test sites with automated hyperspectral spectrometers for surface reflectance validation
- Uncertainty information is provided with every product, including error-correlation information.



Example: Hypernets Ground Processor

- Hypernets is an underdevelopment network of ground test sites with automated hyperspectral spectrometers for surface reflectance validation
- Uncertainty information is provided with every product, including error-correlation information.
- Implementation in ground processor is powered by CoMet tools

Docs » hypernets_processor: Hypernets water and land network data processor • Edit on GitHub

hypernets_processor: Hypernets water and land network data processor

The hypernets_processor module is a Python software package to process the Hypernets land and water network in-situ hyperspectral data to surface reflectance products for distribution to users

There are two main use cases for the hypernets_processor module. The primary function of the software is the automated preparation of data retrieved from network sites for distribution to users. Additionally, the software may also be used for ad-hoc processing of particular field acquisitions, for example for testing instrument operation in the field.

This documentation aimed at both users and developers of the software, find the relevant sections

User Guide

- Ad-hoc Sequence Processing
- Automated Processing

CoMet: Community tools for Metrology

- An open-source software project to develop Python tools for the handling of error-covariance information in the analysis of measurement data
- Includes obsarray and punpy as initial offering, to be extended (optimisation next)
- Moving towards initial release on GitHub/PyPI platform

Next Steps

- Developing tools further including expanding scope to include more functionality, such as optimisation.
- Development of documentation, examples and dissemination approach
- We are looking for beta testers!

