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Abstract

The scattering of microwaves from soil depends on
several surface characteristics, such as the roughness,
vegetation and the moisture content of the top layer.
Knowledge of the temporal and spatial distribution of
this last parameter is of major importance to hydrologic,
meteorologic and climatologic modelling. However
accurate
measurements of the spatial distribution of soil moisture
with classical methods have always been a
difficult task.
Owing to its dependency on soil moisture and its spatial
character, radar remote sensing holds
much promise.
Several empirical and physically based scattering models
have been proposed to retrieve soil
moisture values from
SAR data, but problems occur with the identification of
the roughness and vegetation
parameters. This can be
partly overcome through the use of multi-frequency and/or
multi-polarization radar,
but this option is often not
available on spaceborne platforms. However, single
frequency and single
polarization data allows one to map
saturation-prone areas using a multi-temporal analysis.
The use of multi-
temporal data makes it possible to
retrieve spatial moisture patterns within the studied
catchment by applying
statistical methods to the time
series of images.

Two methods for the analysis
of a winter time series of ERS-1 and ERS-2 images, for
which constant
roughness and vegetation conditions can be
assumed, are suggested. The first method is based on the
temporal coefficient of variation. Since the variability
of soil moisture is expected to be smaller near a stream
then further upslope from the stream, a smaller temporal
coefficient of variation of the returned signal is
observed near streams. The second method makes use of
principal component analysis of the winter time
series of
images. Both methods lead to a representation of the
spatial distribution of the soil moisture at the
catchment scale. However, principal component
transformation performs better since it can separate the
soil
moisture component in the backscattered signal from
other influencing factors such as topography and land
use.
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Introduction

Radar remote sensing has been shown to be a useful tool for
the determination of the spatial soil moisture distribution
within a
catchment. Nevertheless, to get exact values for this
parameter, a lot of information has to be known, such as the
roughness
characteristics of the soil and the vegetation
characteristics. It has been shown that with multi-frequency data
the soil moisture
content and effective roughness parameters
could be derived for bare soil surfaces (Su
et al., 1996) . This procedure cannot be
used for
single-frequency single-polarization satellite data, such as from
ERS satellites.

The first part of this paper presents the time series of
images for the analysis. In the second section the use of the
temporal
coefficient of variation for deriving soil moisture
patterns is discussed. Section three discusses principal
component analysis for
this purpose. Finally, differences between
both methods are discussed.

Experimental site and discription of data

The selected study area for the analysis is the Zwalm
catchment, which is located about 20 km south of Gent, Belgium.
The land
use in the catchment is mostly agricultural but the
southern is forested. The degree of urbanization is about 10%.

For temporal analysis of soil moisture using radar images, it
is desirable to examine a period over which marginal changes in
roughness and vegetation are expected. In our application the
winter period of October 1995 to March 1996 was chosen. During
this period it can be assumed that changes in backscattering are
mainly due to changes in moisture content of the toplayer. Figure
1 gives an overview of the daily rainfall
during the selected peroid and also shows the data takes of ERS-1
and ERS-2 which are
used in the analysis.
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Figure 1: Daily rainfall over the 1995-1996
winter period. Also indicated are the ERS-1 and ERS-2 data takes.

4 descending ERS-1 and 4 descending ERS-2 images were
selected, on the following dates:

31/10/1995: ERS-1, D-PAF
01/11/1995: ERS-2, D-PAF
05/12/1995: ERS-1, I-PAF
06/12/1995: ERS-2, I-PAF
13/02/1996: ERS-1, I-PAF
14/02/1996: ERS-2, D-PAF
19/03/1996: ERS-1, I-PAF
20/03/1996: ERS-2, I-PAF

All images share the same frame and track (resp. 2583 and
423), for which the local incidence angle for each pixel can be
assumed to be constant in time. This is an important
consideration since effects of changes in incidence angles can be
noticed on
the backscattering (Altese et al.,
1996) .

After georeferencing, the images were resampled to 30 by 30
meter pixels. Since the images were obtained from two different
Processing and Archiving Facilities (PAFs), all images were
calibrated to the same reference (ERS-1 I-PAF). The final
preliminary
image processing step to be performed is speckle
reduction. In our study we applied the Gamma MAP filter designed
by Lopez et
al. (1990), which gives very
high speckle reduction.

Temporal coefficient of variation

For the analysis of a series of ERS-1 images, (Gineste
and M&eacuterot, 1996) suggested 4 different parameters,
called radar
indices. One of these indices is the temporal
coefficient of variation (CV), which can be calculated as the
temporal standard
deviation of a pixel divided by its temporal
mean value.

Since the variation of soil moisture near rivers is expected
to be small compared to the variation in upslope areas, this
analysis
should produce less signal variation and thus a smaller
CV near the rivers, and increasing signal variation further away.

After calculating the coefficient of variation on the sequence
of 8 images, lower CV values are indeed observed near the rivers,
as
shown in Figure 2 . However, the influence
of topography and land use can also clearly be seen: forested
areas in the south of the
catchment and scattered urbanized areas
also produce low CV values.



Figure 2: Coefficient of variation over the
8 ERS images. The stream network (black) is draped on top of the
image.

Principal component analysis

The principal component transformation is a linear
transformation which uses image data statistics to define a
rotation of original
images in such a way that the new axes are
orthogonal to each other and point in the direction of decreasing
order of variances.
In optical remote sensing this transformation
has been widely used for image enhancement, digital change
detection, data
compression and classification ( Richards,
1990, Gonzales and Wintz, 1987, Singh, 1989). Principal component analysis has
not
been widely used in radar remote sensing. One example is
provided by Lee and Hoppel (1992)), who use
a modified principal
component transformation on multifrequency
polarimetric SAR imagery for reducing speckle and information
compression.
Subjecting the 8 ERS images to a principal component
analysis leads to the separation of the signal into several
components which
can be assigned to different factors influencing
the backscattering. After ordering the eigenvalues in a
descending sequence, the
corresponding eigenvectors point in the
direction of decreasing variances (see Table 1 ).

Matrix of Eigenvectors Variance (%)  
(-0.33,-0.32,-0.30,-0.27,-0.45,-0.39,-0.38,-0.35) 87.6

(-0.32,-0.27,-0.35,-0.41,0.70,0.20,0.04,-0.01) 3.77

(0.32,0.32,-0.06,-0.21,0.34,-0.79,0.06,0.00) 3.02

(-0.33,-0.28,0.00,-0.05,-0.22,-0.29,0.60,0.56) 2.53

(-0.39,-0.27,0.58,-0.44,0.35,-0.28,-0.16,-0.17) 1.51

(-0.58,0.68,0.27,-0.35,-0.09,0.08,0.04,-0.06) 0.70

(0.31,-0.33,0.61,-0.63,-0.08,0.08,0.05,-0.07) 0.54

(0.01,-0.02,-0.07,0.09,-0.03,0.02,0.68,-0.72) 0.31

Table 1: The Coefficients of the
Eigenvectors for
each Principal Component (PC) and the
Percentage

of the Total Data Variance Accounted for in each
PC.
For our application, 87,6% of the variance (information)
within the image is explained by the first component. This
component will
correspond to the mean behaviour of the catchment
towards backscattering during this period, and will be influenced
mainly
topography (e.g. larger backscattering on the slopes
facing the satellite). The second principal component in our
analysis accounts
for 3.77% of the variance within the image.
This component appears to be mainly influenced of urbanized areas
and land use.

The third principal component, appears to map those pixels
that have a similar behaviour in soil moisture dynamics, as can
be
seen in Figure 3 . The dentritic network is
clearly visible and is extended by those pixels that have
constantly high soil moisture
content. It can be reasoned that
these areas are related to the variable source areas generating
saturation excess overland flow
during rainstorms. The fourth and
subsequent components are probably characterized mostly by noise,
and account for 5.59% of
the image.



Figure 3: Third principal component
retrieved from 8 ERS images. The stream network (white) is draped
on top of the image.

Conclusions

For the determination of soil moisture patterns using temporal
SAR data, we have selected a series of 8 ERS images taken over a
winter period, all sharing the same frame and track, to minimize
the effects of local incidence angle, vegetation, and soil
surface
characteristics. In this paper two methods were presented
for the determination of the soil moisture distribution in a
catchment. A
first method makes use of the temporal coefficient
of variation, but suffers from topographical and land use
effects. Low values of
CV are observed near the stream and higher
values occur in upslope areas. The main drawback of this analysis
is that it is
impossible to distinguish between the influences of
topography, land use, and soil moisture on backscattering, which
results in
corrupted maps of saturation-prone areas.

The second method applied is a principal component analysis on
the SAR images. This statistical technique makes it possible to
separate the soil moisture effects from the governing
topographical and land use influences on the backscattering and
thus allows
us to map the soil moisture distribution within the
catchment during a winter season.

Acknowledgements

This study was supported in part by ESA and the Belgian
'Federale Diensten voor Wetenschappelijke, Technische en
Culturele
Aangelegenheden' (DWTC) through grant no T3/02/35, the
E.C. Environment Research Programme under contract no
EV5V-CT94-
0446, and the Sardinia Regional Authorities. We thank
our colleagues B. Cosyn and M. Marrocu for technical support and
helpful
discussions.

References

Altese, E., Bolognani, O., Mancini, M.,
and Troch, P.A. (1996)
Retrieving soil moisture over bare soils from ERS-1
synthetic aperture radar data: Sensitivity analysis based
on a
theoretical surface scattering model and field data.
Water Resour. Res., 32(3),653-661.

Gineste, P., M&eacuterot P. (1996)
ERS-1 SAR data spatio-temporal analysis for soil moisture
and saturated areas assessment over a small agricultural
watershed. Proc. of Second EV5V--CT94-0446 Workshop ,
pp. 28-55.

Gonzales, R.C., and Wintz, P. (1987)
Digital Image Processing. Addison-Wesley.

Lee, J., and Hoppel, K. (1992)
Principal components transformation of multifrequency
polarimetric SAR imagery. IEEE Trans. Geosc. Rem.
Sens., 30(4),
686-696.

Lopez A., H. Laur and E. Nezry (1990)
Statistical distribution and texture in multilook and
complex SAR images Proc. International Geoscience and
Remote
Sensing Symposium (IGARSS) , pp. 2427-2430
 

Richards, J.A. (1986)
Remote Sensing Digital Image Analysis.
Springer-Verlag

Singh, A. (1989)
Digital change detection techniques using remotely-sensed
data. Int. J. Rem. Sens.,10(6), 989-1003.

Su Z., P.A. Troch and F.P. De Troch
(1996)



Remote sensing of soil moisture using EMAC/ESAR data, Int.
J. Remote Sensing. (accepted)

Keywords: ESA European Space Agency - Agence spatiale europeenne, observation de la terre, earth observation, satellite remote
sensing, teledetection, geophysique, altimetrie, radar, chimique atmospherique, geophysics, altimetry, radar, atmospheric
chemistry


