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ABSTRACT  
 
Denoising and image enhancement pre-processing techniques are fundamental for segmentation and classification 
purposes in a wide range of applications. Particularly, in the field of remote sensing, where synthetic aperture radar, 
(SAR) images are characterized by the intrinsic multiplicative noise, so-called speckle which affects negatively image 
analysis techniques, such as automatic target recognition, surveillance or environmental monitoring and decreases the 
global efficiency of classification algorithms.  
 
In this paper, we address this problem using wavelet-based image enhancement techniques based on the multiscale edge 
representation formalized by Mallat and Zhong [1]. In particular, we implement a mother wavelet based on cubic-spline 
function and apply from modulus-based and phase-based denoising algorithms to linear and non-linear edge stretching 
contrast-enhancement to improve the image quality and identify the optimum wavelet parameters by analyzing the 
signal to noise ratio (SNR). Finally, we assess the efficiency of these methods using the Fuzzy C-mean (FCM) 
clustering algorithm for region classification. 
 
 
INTRODUCTION 
 
SAR imagery finds many uses due to its well-know all-weather acquisition, large coverage, short repeativity and high 
resolution capabilities. In this paper, we concentrate on the evaluation of a cubic-spline wavelet function to tackle the 
denoising and enhancement pre-processing techniques as a preliminary image processing stage for posterior 
classification studies. In particular we concentrate on land cover classification, an important topic in the field of earth 
observation for change detection, cartographic databases updating, crops inventories, cultivars density status and other 
land use monitoring applications amongst others.  
 
For this purpose, effective denoising and enhancement techniques need to be exploited to reduce and potentially 
eliminate the multiplicative noise (so-called speckle) due to the coherent nature of the scattering phenomenon, which 
characterises SAR images and consequently, minimise the perturbation of this noise for posterior image analysis 
techniques without perturbing other properties of the images.  
 
This paper is structured as follow; firstly, we describe the data imagery that is used for the demonstration of the speckle 
reduction and select the region of Neetzow, Germany as our case study. Then, we explain the methodology that we have 
followed and establish the steps for an optimum SAR image pre-processing. Thirdly, we provide a brief overview of the 
wavelet theory and concentrate on the multiscale edge representation where specific rule-based algorithms are studied 
and implemented for denoising and contrast enhancement. The SNR is analysed for the selection of the threshold and 
enhancement parameters of the rule-based algorithms and finally, the results are evaluated using the FCM clustering 
algorithm. The conclusions are discussed in the latter sections of the paper. 
 
 
 
 
 
 
 



DATA SET 
 
In this paper, we applied the proposed methodology to a case study on an agriculture site in the region of Neetzow (East 
Germany) obtained in March 2001 as shown in Fig.1. The images (2.2 m x 3.0 m range and azimuth resolution 
respectively) were acquired with the E-SAR airbone system (L-band, 1.30 GHz) under the ProSmart II Program to 
simulate the high resolution SAR imagery that will be obtained by TerraSAR in 2006.  
 

 
Fig. 1. E-SAR image (3.6 km x 8.6 km) acquired over Neetzow (Germany) in March 7, 2001. 

 
 
METHODOLOGY 
 
In the approach that we will present in this paper, we concentrate in the implementation of wavelet decomposition as a 
powerful tool for recovering SAR images from noisy data [2], [3], [4] and [5]. In particular, we study the different 
wavelet denoising and enhancement techniques as variations of the multiscale edge representation, which will be 
introduced in the following section. Our analysis focused on the election of the best combination of modulus- and 
phase-based denoising techniques as well as the analysis of linear and non-linear stretching conditions for contrast 
enhancement. An exhaustive study of the selection of thresholding parameters and multiplication factors, as well as, the 
combination of the best denoising criteria at the different decomposition levels are investigated.  
 
For a priori denoising evaluation, we chose the Fuzzy C-means clustering algorithm, in order to analyse the wavelet 
based denoised and enhanced reconstructed images focusing on preserving the edges and additional fundamental 
information for classification or segmentation applications like in the case of crop type classification, which we carried 
out with the SAR imagery of our case study. These are preliminary results which we intend to extend to the complete 
SAR imagery of the region for cultivar classification and change detection analysis.  
 
 
WAVELET SPECKLE FILTERING 
 
In [3], Gagnon and Jouan perform a comparative study between a complex wavelet coefficient shrinkage filter and 
several standard speckle filters, largely used by SAR imaging scientists, and show that the wavelet-based approach is 
among the best for speckle removal.  
 
In general, methods based on the multiscale wavelet decompositions consist of three main steps: Firstly, the raw data 
are decomposed using of a selected wavelet transform. Secondly, the wavelet coefficients are analyzed using different 
selection and rule-based mechanism, and finally, the denoised signal is synthesized from the processed wavelet 
coefficients through the inverse wavelet transform to create the reconstructed enhanced image. 



In our study, we implement the multiscale representation formalized and studied by Mallat and Zhong [1]. In their 
approach a separable cubic-spline wavelet function ),( yxφ plays the role of the smoothing filter, and the corresponding 
oriented wavelets are given by its partial derivatives: 
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The 2-D dyadic wavelet transform of an image ),( yxf at scale J2 , at position ),( yx , and in orientation k is defined 
by (2) and (3) where the asterisk denotes 2-D convolution. For our study, we introduce a discrete representation f(xi, yi), 
i = 1, .., n (no. of pixels) of the image f.   
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This representation provides the information required to calculate the gradient and consequently, the edges of the 
image. Thus, if we applied the wavelet transform (2), then, it can be easily shown that the result obtained is the gradient 
of the image, f smoothed by the function ),( yxφ at dyadic scales, which it will be denominated, the Multiscale 
gradient. If the points which satisfy the condition of local maximum of the gradient magnitude are calculated then it is 
possible to locate the edges of the discretized image. In particular, a point (xi, yi) is considered an edge point if the 
magnitude (4) of the gradient fJ2

ρ  attains a local maximum along the gradient direction defined by (5). Thus, we can 
define a subset of points that satisfying certain conditions, which will be explained in the following subsections, to 
improve the contrast and provide effective denoising rules for a better image analysis.  
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Fig. 2. a) Proposed Wavelet analysis (4-level decomposition) b) top right (Dec. 4-1) and c) bottom (Dec. 3-3) 

 
For a J-level 2-D wavelet transform (Fig. 2.), the representation shown in (6) provides the notation of the discrete low-
pass approximation of ),( yxf at the coarsest scale J2 that we will denominate the multiscale edge representation of 
the image f, where the two data sets, )(

2
fI J

and ),(
22 JJ IfG , describe the location of the edges and the corresponding 

multiscale gradients respectively and are merely a reduced subset of the overall image description.  
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By transforming these two subsets using specific denoising and contrast enhancement knowledge rules which are 
described in the following two sections; 1) denoising and 2) contrast enhancement criteria, we are then, in the position 
to reconstruct the image from the multiscale edge representation sets and obtain an image with the desired properties. In 
order to reconstruct the image from the incomplete data set, special methods and certain a priori knowledge has to be 
applied to provide convergence to the true solution applying the inverse transformation. In this work, we have used the 
so-called projection onto the convex set (POCS) method, which has been applied successfully to image restoration [6] 
and inverse problems in optics [7] to reconstruct the final images. The algorithm starts with the wavelet transform 
directly obtained from the multiscale edge representation and then, carries out a certain number of orthogonal 
projections onto two convex sets, one of which is the complete set of the wavelet coefficients and the other is the range 
of the wavelet transform until the algorithm converges to the area close to the true solution. In our implementation, we 
use 15 iterations which are sufficient for an accurate image reconstruction.  
 
 
Denoising 
 
Modulus-Based Denoising 
 
The modulus-based methods use information about the length of the gradient vector to separate noise from data. Noise 
typically has a small gradient. Therefore, by removing all gradients whose module is smaller than a given threshold, t  
we can remove the noisy data. A problem arises, however, when the distinction between true and noisy edges tends to 
disappear. This might happen for low-contrast images for which some true edges could be mistakenly removed.  
 
To make the method more robust, we apply a scale-dependent threshold, jt (7), which can take larger values for the 
finer scales that contain more noise and smaller values for the coarser scales. Applying this method, we modify set 
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Phase-Based Denoising 

 
The phase-based algorithms use the fact that gradients of real edges have almost the same angles in a certain small 
neighbourhood. A gradient with a phase that is totally different from its neighbours is most likely to be generated by 
noise and should thus be removed. For instance, an edge-tracking method, seeks for modulus maxima with 
approximately the same angle in a search region )(iQ about pixel i. When there are no pixels with similar phases in the 
search region as it is establish by (8), the pixel in question should be removed from the representation. 
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Another implementation of this method uses the calculation of the average phase of the area around the pixel. When the 
difference between that average and the phase of the pixel is larger than a certain threshold (9), the pixel is considered 
to be a noisy pixel and should therefore be removed. Similarly to the modulus maxima, the phases of real edges 
normally decrease when the scales increase, because the increasing scales correspond to smoother images. So, when the 
phase does not decrease, it is said to be an edge generated by noise and should thus be removed. The following 
describes this algorithm: 
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Contrast Enhancement 
 
The gradient magnitude can serve as a contrast measurement between objects in the image. Small magnitudes show 
small contrast, and large magnitudes show large contrast. By manipulating the magnitudes of the gradients, one can 
change the contrast of an image. Lu et al. [8] and Lu and Healy [9] proposed several methods of contrast enhancement 
based on manipulating the gradients, and Bronnikov and Duifhuis [10] proposed an additional approach using a version 
of  non-linear edge stretching for medical imaging.  
 



Linear Edge Stretching 
 
The most logical step for enhancing contrast would be to multiply the multiscale gradient vectors by a constant, k as 
shown in (10), applied for the different scales so that their lengths increase and contrast is enhanced, emphasizing 
different structures of the image. This gives us a method of constant edge stretching, which can be formally written as: 
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This method can be modified by varying the constant, k according to the different decomposition scales (J), i.e.: Kj. In 
this way, different structures in the image are emphasized accordingly. This method will work efficiently for images 
with a relatively low overall contrast.   
 
Non-Linear Edge Stretching 
 
To optimize nonlinear stretching for images with a large dynamic range, a method for contrast enhancement which uses 
equalization of the edges so that all the modulus maxima on the scale are set to the same value is considered in (11). 
This method does not take into account noise so a previous denoising stage is required. 
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In the previous equation (11), the gradients are increased by a factor which depends on themselves, i.e.: the smaller the 
gradient, the larger the multiplication factor and vice-versa, reducing the differences between modulus maxima and 
enhancing the visualization capabilities. A study by Lu and Healy [8] showed the combined capabilities of (12) for 
simultaneous denoising and contrast enhancement. The optimal parameters which were selected for our implementation 
to test the capabilities of this method for SAR speckle denoising are a = 0.1 and b = 0.0. 
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In summary, we have studied different knowledge-based rules and select the best parameters for denoising and contrast 
enhancement for posterior image analysis such as image classification. The next section will provide an a priori 
classification algorithm based on the grey-level histogram in order to evaluate the wavelet-based methodology and its 
thresholding and enhancement parameters. 
 
FUZZY C-MEANS CLASSIFIER FOR CROP TYPE CLASSIFICATION 
 

Clustering algorithms attempt to partition unlabeled feature data into clusters, each of them with distinct properties. In 
this way, different features inside a cluster show a degree of similarity with other values within the same cluster. In 
other clustering methods, each data entry is label as belonging to one and only one cluster without relation to the center 
of other clusters. The inadequacy of this model for real data description is solved with the introduction of the Fuzzy C-
mean, FCM algorithm [11]. In our study, we use this method, which we already tested for textural image classification 
[12] to evaluate the image denoising and contrast enhancement and validate the results of the SAR image de-speckle. 
Thus, we set the fuzziness parameter, m equal to two and use the Picard interaction with a stop criteria given by  the 
maximum of the difference between the membership degree of the i-th fuzzy subset of the j-th datum for the iteration 
(k+1)-th and k-th is smaller than a given epsilon, i.e. η = 0.001. 

 
RESULTS 
 
The results obtained with the wavelet-based module and phase denoising as well as with the linear and non-linear edge 
stretching for contrast enhancement are presented. Firstly, we provide the results for modulus-based denoising using a 
threshold equal to 0.9 as shown in Fig. 3. It is possible to appreciate the denoising effect before and after the application 
of the threshold which is eliminating the points which module is less than a given threshold, which may vary within the 
different scales of the wavelet decomposition, one of the advantages of this method. 

 



      
Fig. 3. Modulus-based Denoising, a) Magnitude before thresholding t = 0.9 and b) after thresholding. 

 
The evaluation of the wavelet thresholding and enhancement factors for the methodology that we have proposed has 
been selected using the signal to noise ratio of two significant regions of interest within the image, (Fig. 4). The values 
of the SNR increase when the threshold parameter decreases until it reaches a critical threshold, tc which in our case, it 
is set to 0.3 and then, there is a decrease in the SNR and in the image quality (Fig. 5). Both regions of interest have a 
similar trend which increases from 1.2 to 0.3 and then, the image quality and denoising properties provided by (7) 
decreases as it can also be verified with the FCM clustering results. 
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Fig. 4. SNR evaluation and Thresholding parameter selection for Module-based Denoising  

 
This parameter evaluation study has also been carried out for the different noise-knowledge rules i.e.: phase-based 
denoising and linear and non-linear edge stretching for contrast enhancement and the best parameters have been chosen 
according to the SNR criteria and the FCM classification. The results of the different methods are shown in figure 6, 
where the denoising and contrast enhancement can be appreciated. 

 

    
 

    
Fig. 5. Modulus-based Denoising Magnitude and FCM for a) original SAR, b) t = 0.9, c) t = 0.3 and d) t = 0.1 

 



Finally, as it has been mentioned previously, we can identify the effect of the different denoising and contrast 
enhancement rules and its parameters optimally selected using the SNR for a selected region of the original SAR image. 
The qualitative comparison with the original image can be visually obtained (Fig. 6). 

 

 
 

     
 

    
Fig. 6. Image Denoising and Enhancement Evaluation a) Original SAR, b) Modulus-based Denoising (t = 0.3), c) 

Phased-based Denoising I (Eq. 8), d) Phased-based Denoising I (Eq. 9, k = 0.7), e) Linear Edge Stretching (k = 6) and f) 
Non-linear Edge stretching I (Eq. 11, k = 7) and g) Non-linear Edge stretching II (Eq. 12,  kj = 3) 

 
The combination of the best rules has been studied. The results shows that the module-based denoising with 0.3 critical 
threshold parameter and the non-linear edge stretching (11) with k = 7, applied jointly to the image and then, 
reconstructed using the POCS method provide the best image denoising and enhancement for posterior image analysis 
and in particular, for image classification. 

 
CONCLUCIONS 
In this paper, we have proposed a methodological framework based on the wavelet-based multiscale edge representation 
using a cubic mother wavelet and applying the POCS method for image reconstruction applied to SAR imagery. The 
results show that the evaluation of the thresholding and enhancement parameters using the SNR selection can provide 
the means for an automation of the system which is one of the main drawbacks of the wavelet-based image denoising. 
On the other hand, this methodology allows us to work with different thresholding values for different scale wavelet 
decomposition and obtain a combined effect of the rules-based enhancement and denoising, which facilitates image 
analysis and FCM classification. 
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