
Physical Characterization and Comparison

of Doppler and Attitude Estimates

for ENVISAT/ASAR and RADARSAT-1

Marina V. Dragošević, Riccardo Ferrara
Advanced Computer Systems S.p.A.

Via della Bufalotta 378, 00139 Rome, Italy
Emails: m.dragosevic@acsys.it, r.ferrara@acsys.it

INTRODUCTION

ENVISAT and RADARSAT-1 both carry multi-beam SAR sensors operating in C-band at similar radar fre-
quencies from similar orbits. There are also important differences between the two systems: the ASAR steering
strategy, its active antenna array, the choice of polarizations and different burst strategies. The common features
and the differences make the Doppler estimation issue an interesting topic for a comparative analysis.

ACS has developed an adaptive and efficient generic SAR processor, GASP, which includes several algo-
rithms related to Doppler and attitude estimation and tracking. They are used routinely during image formation.
This has allowed us to compare the performance of the same estimation methods for different SAR data sources.

An intrinsic feature of the implemented estimation methods is the Doppler centroid model and parame-
terization in terms of the physical properties of the sensor, the attitude of the platform and the state of relative
motion. In order to make such an approach meaningful, it is important to characterize the system precisely
enough, using pre-launch measurements, current instrument characterization data, as well as in-flight monitor-
ing and analysis of the telemetry. Certain systematic offsets, misalignments or nonlinearities can be identified
from an accumulation and off-line analysis of Doppler and attitude estimates [9]. We have observed and we
have tried to quantify some of them. Then we have included them in the processor via configurable system
characterization input files, customized for each mission.

BASIC DOPPLER CENTROID MODELS

The Doppler centroid (DC) fc, as a function of the elevation angle γ can be expressed in terms of the directly
or indirectly available measurements in one of the following ways:

fc(γ) = ft(γ) + fm(γ)︸ ︷︷ ︸
reference

+(φ̂y sin γ − φ̂p cos γ)fa + ε(γ) (1)

fc(γ) =
f0

f∆

(
f̂H(γ)− f̂L(γ)

)
︸ ︷︷ ︸
from sub-bands

+E(γ) (2)

fc(γ) = n̂fp︸︷︷︸
ambiguity

+f̂(γ) + e(γ) (3)

All of the above forms are well known. The specific terms are defined in the Appendix.
First, DC is expressed in terms of the measured or estimated attitude variations (yaw φ̂y and pitch

φ̂p) from some reference values, corresponding to the reference (expected) DC. This reference DC includes
the deterministic term ft(γ) (due to the transversal component of the relative velocity) and the term fm(γ)



which captures the specific behavior of the particular system (modeled as beam mispointing, steering, offsets,
misalignment). We refer to this form as the physical model.

Next, DC is expressed in terms of the ambiguous DC estimates obtained from two range looks (high and
low bands, separated by f∆, around the radar frequency f0) at different ranges across the swath. This form is
known as the wavelength diversity model, closely related to the class of PRF ambiguity resolvers based on
λ diversity.

Finally, DC is expressed in terms of the ambiguity number n and ambiguous DC estimates, where we may
use the look DC estimates ˆf(γ) = (f̂H(γ) + f̂L(γ))/2. Due to the explicit dependence on the pulse repetition
frequency (PRF) fp, this form is referred to as the PRF ambiguity model and it is associated with the
ambiguity resolvers based on the PRF diversity in the multi-beam case. Such resolvers exploit the beam overlap
strips within the swath, minimizing the norm of the error n̂(k+1)f

(k+1)
p − n̂(k)f

(k)
p + f̂ (k+1)(γ)− f̂ (k)(γ) in the

overlap between the k-th and (k + 1)-th beam.
The error terms (ε, E and e) are due to the estimation errors, but they also include all unmodeled

(unknown or random) physical properties of the sensor.
Each of the above models may be insufficient by itself. A combination of all three improves the accuracy

and robustness of the DC estimate. The Doppler estimation problem is posed as a parameter estimation problem.
DC is modeled as a smooth function of γ, parametrized by φy and φp. The problem is to estimate them using
SAR echo data at various levels of processing in such a way that the estimates are consistent with all three
DC models. In particular, the estimates must be consistent with the a priori knowledge of the attitude, should
satisfy the λ diversity property, the “fractional” part of fc(γ) must be consistent with the ambiguous estimates
across swath and, in the case of multiple beams, it should be consistent with the concatenation (PRF diversity)
property.

The a priori model and the weights placed on these different requirements should be adjusted for a
particular mission to reflect the level of knowledge and the precision of the physical characterization of that
mission.

EFFICIENT DC ESTIMATION SCHEMES

DC estimation can be done concurrently with image formation in an efficient way. The combined processing
scheme presumes block-wise data processing and block to block DC adaptation. The methodology applied in
GASP consists of:

• Doppler feature extraction in signal and image domain;

• parameter estimation and refinement using the physical DC model.

The following features extracted from the signal or image data are used:

azimuth correlation coefficient of azimuth uncompressed or azimuth compressed complex data (SLC, IMS);
the phase of the first correlation coefficient approximates the Doppler spectrum peak position [1] [3];

energy of the azimuth spectral looks of compressed multi-look data (SGF, IMP); it is matched against a
set of conditional expectations of the look energy levels, each one calculated for a different hypothesized
DC error;

residual scalloping level of azimuth compressed burst data (SN, SW, IMM, APM, WSM . . . ); it is then
equalized by the slope of the azimuth antenna gain, which is shifted adaptively in order to minimize
scalloping [4] [8].

Features extracted before azimuth compression lead to coarse and ambiguous DC estimates. Features extracted
in image domain lead to DC refinement. The choice of the most efficient refinement algorithm clearly depends on
the requested product type. The obtained coarse or refined DC estimates are range dependent. Their usefulness
in the combined estimation scheme is subject to accurate characterization of the azimuth antenna beam pattern
in terms of: peak position, integral corresponding to different looks or slope.

Parameter estimation means, in fact, fitting the attitude angles [5] [6] and, inherently, the ambiguity
numbers, for all beams or polarizations simultaneously to the extracted features. It is carried out block by block
using the coarsely estimated Doppler spectrum peak position in the latest data block, as well as the tracker
state, which results from the DC refinement on previous blocks [7]. Attitude parameter tracking is related to
the physical model (1), where the term fm(γ) has a particular form for RADARSAT-1 and for ASAR.
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Figure 1: ASAR steering (in degrees) and expected DC for IS7 (in Hz)

ATTITUDE REFERENCE MODELS

We use the Earth center inertial (ECI) system for all calculations. Two local right-hand reference systems
fixed to the satellite will also be considered. The first one is the flight reference systems adopted by CSA for
RADARSAT-1 attitude measurements and defined as follows. The Z axis is pointing downwards to nadir, X is
parallel to the ground-track ECI velocity, relative to the Global Ellipsoid. The Y axis is in the direction of the
vector product of Z and the ECI velocity (Y points to the right). The other system is slightly offset from the
flight frame. Its Z ′ axis points to the Earth center and Y ′ is in the direction of the vector product of Z ′ and
the ECI velocity. This reference frame is very closely aligned with the actual physical body of a freely orbiting
satellite which has an adequate rotation rate and zero attitude. This system is equivalent to the ESA local
orbital system, excepting the orientation of the two axes (up/down and left/right).

The transformation matrix B from the X ′Y ′Z ′ to the ECI system can be expressed in terms of the ECI
state vector as shown in the Appendix. B depends only on the platform position (rx, ry, rz) and ECI velocity
(vx, vy, vz). The transformation matrix F from XY Z system to ECI system can be expressed similarly in terms
of the state vector position and velocity (in ECI) and one additional parameter (∆z), namely the location of
the intercept between the Global Ellipsoid rotation axis and the geodetic vertical (easily calculated from the
geodetic parameters).

At the level of first order approximation in steering angles yaw φy and pitch φp, the ideal zero-Doppler
steering with respect to the XY Z reference system is:

φ̃y = −vr
va

(4)

φ̃p =
vu
va

(5)

where vu, vr and va are the upward, right and ahead projections of the relative velocity [7], which takes into
account Earth rotation (see Appendix). The actual ASAR beam steering law, expressed in XY Z system is:

φy = φ̃y (6)
φp = 0 (7)
φr = 0 (8)

with yaw about +Z, pitch about +Y and roll about +X. The ideal zero-Doppler steering and the actual steering
law, expressed in the X ′Y ′Z ′ system (via transformation by B−1F) are plotted in Fig. 1 for one ENVISAT
orbit. They are in complete agreement with the ESA provided equations for the steering law (except for the



-0.1

0

0.1

0.2

0.3

0.4

-60 -40 -20 0 20 40 60 80

attitude

latitude [deg]

×
×

×
××××
×

×
×

×

××
×

×

×
×
×
××××××

×××× × ×
×

?? ? ?? ? ? ? ?? ?

××
××××

× ×
× ×

××× ××
×
××
×
××××××
××× × ××?? ? ?? ? ? ? ?? ?

-0.1

0

0.1

0.2

0.3

0.4

15 20 25 30 35 40

attitude

elevation angle [deg]

×
×

×
××

××
×

×
×

×

××
×

×

×
×

×
××× × ××

××××××
×

××
× ×××

××
××

× ××× ×
×

× ×
×
×× × ×× ×××××××

× × × × ×

×

× × × ×

×

×
×

×
×

×

× ×
× ×

×

×
×

×
×

×

×
×

× ××

×
×

×
×

×

× ×

×
×

×

×
×

×
×

×

× × × ×

×

× ×

×
×

× × × × ××
× × × ××
× ×

×
×

×
× × × ××
× ×

×
××

× ×
× ××

× ×
×
×

×
× ×

× ××
×

×
×
×

×
× × × ×

×
× ×

×
×

Figure 2: ASAR yaw (upper) and pitch (lower) estimates in XAYAZA (“×” single beam, “?” WS)

sign of yaw, due to a different convention). ESA equations are given as a function of the satellite true argument
of latitude, ours in terms of the state vectors. We can define the new system XAYAZA centered at the satellite
and rotated from XY Z by the steering angles (φyφpφr) as chosen by ESA. We have adopted XAYAZA as the
reference system for estimating ASAR attitude and we have included (4) in the term fm(γ) in (1).

All analyzed ASAR data show an offset in yaw and a minor offset in pitch relative to XAYAZA. Many
examples have lead us to introduce an additional term in fm(γ) to take into account this effect. Setting the yaw
offset in the physical model φ̄y = 0.21 degrees and the pitch offset φ̄p = 0.02 degrees (in agreement with [9]),
DC can be predicted very well for any beam in every processing block. The IS7 example is shown in Fig. 1. In
GASP we set the yaw offset in the physical model to be φ̄y = 0.23 degrees and neglected the small pitch offset,
φ̄p ≈ 0. The exact value of the offset is not critical as long as it is in the ballpark. The current GASP values for
the offset, though not quite precise, provide DC prediction to well within one PRF. If larger discrepancies are
detected in future, the GASP offset values will be reconfigured.

Since RADARSAT-1 is not steered, we could adopt either the XY Z or the X ′Y ′Z ′ system as reference
(φy = φp = φr). We will use the XY Z system, because it is consistent with the CSA convention. This leaves
unmodeled small pitch values, which vary around the globe. Many examples confirm this effect.

RADARSAT-1 pointing includes an additional systematic squint which is elevation dependent. For eleva-
tion angles between 15 and 40 degrees this equivalent squint φ̄(γ) varies about 0.5 degrees. It must be taken into
account when estimating attitude from Doppler measurements. It is also included in fm(γ) in (1). The existing
squint model is inaccurate for the extended beams, but it is sufficiently precise for the standard (S), fine (F)
and wide(W) beams. Precise Doppler estimation on many SCW scenes led in the past to a slight modification
of the CSA model [6] [8]. When the beam offset effect is properly modeled, RADARSAT-1 shows amazingly
small, beam independent, residual attitude. No trends or large squints have been observed. Therefore we set no
bias (φ̄y = φ̄p = φ̄r). Some irregular rapid attitude variations have been observed.

EXAMPLES OF ATTITUDE ESTIMATES

In GASP the attitude reference model is configurable and adjustable to suit the particular mission. The ref-
erence system for estimating the residual attitude is also configurable. We use XAYAZA for ASAR, XY Z for
RADARSAT-1.

Fig. 2 shows the estimated ASAR attitude (in XAYAZA system) from 15 AP, 16 IM and 11 WS cases from
various geographic regions. As expected, the estimates originating from WS data are much more consistent. The
estimates made on single beams include the AP and IM data, as well as the single beam estimates extracted
from WS data for the purpose of this analysis. Clearly, the estimation error has a larger variance for all single
beam cases. Additionally, the second plot indicates a dependence of both yaw and pitch estimates on elevation
angle. Yaw and pitch variations over the elevation angle appear to be correlated.

Attitude tracking examples are shown in Fig. 3. The plots show yaw and pitch tracking for a long IS4
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Figure 3: Attitude tracking (in XAYAZA for ASAR, in XY Z for RADARSAT-1)

(HH) data take (about 100s). The first part is over the Atlantic ocean and the second part is over Flevoland.
The difference in the estimated attitude corresponds to a difference in the DC of about 20 Hz between sea and
land estimates.

An example of attitude estimates (in XY Z system) for a recent (orbit 39992) RADARSAT-1 SNA pass
is also shown. Yaw is steady and pitch is more variable, as is often the case.

Estimation precision depends on the beam (swath) and mode for both systems, but, generally, it is high.
Different DC refinement methods produce consistent estimation results. For ASAR there is a slight disagreement
between the AP components and, as illustrated, between the WS components.

WAVELENGTH DIVERSITY AND INCONSISTENCY

A combination of (2) and (3) can be used to estimate the ambiguity number. The difference between the DC
estimates from two different range looks is relatively very noisy and the factor f0/f∆ in (2) is very large. Much
averaging is needed to obtain statistically stable estimates. Generally, the technique works for RADARSAT-1.
It works better for larger bandwidth (F) beams. For ASAR the same algorithm seems to converge to wrong
values. Furthermore, these values depend on f∆. The introduction of a “system offset frequency” [9] may or
may not be an elegant way out. Such offset frequency is not needed for RADARSAT-1.

Two diagrams in Fig. 4 illustrate the problem. The plots show the average difference between the estimated
DC and the reference (expected) value for two RADARSAT-1 and two ASAR scenes. DC is estimated for 10
different range looks. The reference value is computed for the central wavelength and used for all looks. Upon
averaging across and along swath, the slope of the plots should reveal the full DC. This can be verified for
the two RADARSAT-1 scenes, one from an ascending S1 pass (negative DC), the other from a descending S7
pass (positive DC). No similar conclusion can be made for the two ASAR scenes. One of the datasets, IS4 in
the descending pass, has a DC very close to 0, while the other one, IS6 in ascending pass, actually has the
ambiguity number -1. This is not evident from the plots. The two datasets have different polarization, but a
similar nonlinear property.

MULTI-BEAM AND WIDE SWATH INCONSISTENCY

PRF ambiguity in beam overlap [2] can be exploited for DC ambiguity resolution for RADARSAT-1 SCN and
SCW modes and for ASAR WS mode. For both systems it is necessary to limit the search for the optimal ambi-
guity numbers to reasonable values. We set the range of possible ambiguity numbers to ±12 for RADARSAT-1
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and to ±2 for ASAR. Due to a larger DC (pointing) “gap” between ASAR beams a wider range might result
in false values.

Besides satisfying (3) for pairs of beams in beam overlaps, the DC estimates must follow the form of
change across swath which is consistent with (1). The combination of models (1) and (3) for multi-beam, wide
swath modes offer the best opportunity to simultaneously estimate the attitude and the ambiguity numbers.
The change of the ambiguous DC estimate across swath may itself reveal the full DC, according to (3), if the
swath is wide enough. PRF diversity additionally contributes to the ambiguity resolution.

RADARSAT-1 is better behaved in this sense as illustrated by Fig. 5. Both plots represent the averaged
residual difference between the refined DC estimates and the over-all fit based on the physical model. Two SNA
RADARSAT-1 datasets are presented. They were acquired in an interval of 5 years (orbits 09073 and 39992).
The residual ripples are similar and small. They are probably due to the squint model deficiency. The model is
polynomial in elevation angle, which is probably inadequate.

The ASAR plot shows a higher level of discontinuity between beams. The over-all fit of the physical model
is still successful. It could be improved by modeling the slight attitude differences between beams. Fig. 5 suggests
a different possibility. The discontinuity seems to be related to a beam edge deviation. Also, a correction which
depends continuously on the elevation angle may be appropriate, similar to the RADARSAT-1 case, but much
smaller. The waveform of the correction wrt elevation angle resembles the shape seen in Fig. 2.

CONCLUSION

The main cause of ASAR non-zero DC is the inadequate pitch steering.
All Doppler estimation methods are very sensitive to slight variations of the azimuth beam pointing.

Many factors affect the ASAR azimuth antenna beam pattern: beam type, frequency, polarization, mode. ASAR
requires more complex physical modeling than RADARSAT-1. In the absence of very detailed physical models
certain techniques (e.g. MLCC), which work for RADARSAT-1, fail for ASAR.



PRF diversity approach is statistically better than the wavelength diversity approach in almost all an-
alyzed multi-beam cases, but the domain of the ambiguity search must be limited for ASAR. The method
works especially well when extended to the full swath via physical modeling. The combined Doppler estimator
described in [7] works very reliably for multi-beam modes of both missions.

For RADARSAT-1 and ASAR strip-map modes and ASAR AP mode the most reliable method for
resolving the DC ambiguity is based on the physical model. The application of the physical model makes sense
if and only if various misalignments are accounted for and regularly monitored. Prompt distribution of such
monitoring results would be very beneficial for SAR processors which, like GASP, use physical modeling of DC
(Doppler rate is derived thereafter).

For lengthy passes, DC must be updated. For the lengthy RADARSAT-1 passes attitude tracking is
necessary on top of geometry updating due to possible attitude variations. ASAR attitude appears to be more
stable even within long scenes.

Long-term and medium-term, however, RADARSAT-1 continues to be stable and predictable with no
major attitude drifts. For ENVISAT it remains to be seen.

APPENDIX - BASIC EXPRESSIONS

The physical model (1), the steering model (4), (5) and the transformation matrix between XY Z and X ′Y ′Z ′

can all be expressed explicitly in terms of the state vector, the Earth angular rotation velocity ω and the local
geodetic parameter ∆z = (R2

e/R
2
p−1)(rz−H sin η), where Re and Rp are the Earth semi-major and semi-minor

axes, H is altitude above Ellipsoid and η geodetic latitude:

fa = − 2
λ
va

ft(γ) = − 2
λ

(vu cos γ + vr sin γ)

fm(γ) =
{
φ̄(γ)fa for RADARSAT-1
((φ̄y + φ̃y) sin γ − φ̄p cos γ)fa for ASAR

va = vh(∆z)− ω
rxvy − ryvx
vh(∆z)

vu = vv(∆z)

vr = ω
r(∆z)vz − (rz + ∆z)vv(∆z)

vh(∆z)
F = T(∆z, rx, ry, rz, vx, vy, vz)
B = T(0, rx, ry, rz, vx, vy, vz)

T(δ, rx, ry, rz, vx, vy, vz) =
1

r(δ)vh(δ)

 r(δ)vx − rxvv(δ) (rz + δ)vy − ryvz −rxvh(δ)
r(δ)vy − ryvv(δ) rxvz − (rz + δ)vx −ryvh(δ)
r(δ)vz − (rz + δ)vv(δ) ryvx − rxvy −(rz + δ)vh(δ)


r2(δ) = r2

x + r2
y + (rz + δ)2

r(δ)vv(δ) = rxvx + ryvy + (rz + δ)vz
v2
h(δ) = v2

x + v2
y + v2

z − v2
v(δ)
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