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ABSTRACT.:

For the effectiveapplication of processing
technigues used to derive surface
information from satellite data, it is first
necessary to determine if the image data
contains atmospheric artifacts. This paper
presents a pilot-processing scheme that
has been developed using ATSR-2 image
data. This scheme is part of a novel
approach that wl utlise all of the
attributes of the ATSR-2 instrument, i.e.
the visible and thermal channels, and the
dual look capability. Cloud detgon will

be performed using a synergy of familiar
methods (algorithms, knowledge-based
systems and fuzzy set theory) that will be
controlled using fuzzy logic operators. The
performance of this scheme is evaluated
with a simulated data set containing pixels
of known classes, to which the processed
image is compared, and a single ATSR-2
image scene.

|. INTRODUCTION

There are many applications for low-
spatial resolution satellite data. C limate,
land and cloud studies all include
examples of commercial and scientific

uses of such data.

Scientific projects, such as climate
modelling, require information on land-
atmosphere interaction to iprove their
predictions.  This  necessitates the
identification of cloud in atellte images
over land; land-use studies also require the
surface data to be frefom contamination

by cloud and so again, cloud flagging is
required. Kriebekt al.[1] state that “there

iIs no algorithm which derives surface
products from atellite data which doesn’t

require the pixel to be completely cloud
free”, and onversely that “there is no
algorithm to derive cloud products which
doesn’t require the pixel to be fully
cloudy”.

Poor determination of whether a pixel is
cloud filled or not will lead to inaccurate
analysis when using the data contained
within it. Joneset al. [2], [3] discuss the
presence of cloud contamination in the
ATSR spatially-averaged  sea-surface
temperature producASST), in which use
has been made of the cloud clearing tests
implemented by the Rutherford Appleton
Laboratory (RAL). The presence of this
cloud contamination alters the derived sea-
surface temperature ral, as is obvious,
will cause errors in those applications
using the data, such as c limate modelling.

Many climate  monitoring/modelling
programs have specified a need for high
accuracy ocean, climate and land s urface
data. The ATSR instrument series is built
to take measurements to high accuracy
(.e. sea surface temperature derivations
with accuracy better thar0.3K [4]), but
without effective cbud  detection the
accuracy of the derived data sets will be
significantly worse than the requirements
of the users.

This doctoral research pemt, based at
Cranfield University, aims to fulfil the
need for higheaccuracy data sets through
the development of a robust -cloud
screening system for ATSR-a@. Since
the initial focus of the ATSR and
Advanced Very High  Resolution



Radiometer (AVHRR) instruments was for
the collection of ocean-atmosphere data,
there has been a great deal of research
done into the dettion of cbud over sea-
surfaces. The focus of thgroject is to
develop a system that works @tively
over land as well as oceamfaces.

[I. THE ATSR INSTRUMENT

The ATSR-2 instrument was designed and
built by a consortium led by RAL. It
operateson-board the second European
Remote Sensing satellite (ERy In a
polar orbit that enables global imaging
with a scene revisit time of 35 days [5].

The first generation Along-Track Scanning
Radiometer (ATR-1) opeates withfour
wavelength bands (luén, 3.7um,
10.8um, and 1pm), and two views (a
nadir view, and a forward view set at
approximately 47 forward of the nadir).
This allows for a significant improvement
in deriving surface characteristidsrough
the calculation and removal of atmospheric
effects. ATR-1 was designed with seven
main applications:

» sea-surface measurements,

* cloud and atmosphere measurements,
* lake measurements,

* sea-ice measurements,

* land-ice measurements,

» de-foregation measurements,

» forest-fire getection.

The addition of the extra visible channels
to the second generation instrument,
ATSR-2 (0.5fm, 0.67um, and 0.8jdm),
expands the ATSR-1 obgtives to include
[6]:

* Quantitative vegetation measurements,
e leaf-moisture measurements,

e vegetation state measurements.

The next version of this instrument
(AATSR) will fly on-board the Envisat-1
satellite.

. ATSR-2 DATA PRODUCTS AND
PROCESSING

There are eight ATSR-2 atia products
described by Mutlow [7] and Bailey [8],
six of which require cloudetection to be
performed: gridded brightness
temperature-reflectanceroduct, gridded
browse product, gridded sea-surface
temperature product, spatially-averaged
brightness temperature-reflectance
product, spatially-averaged cloud
temperature-coverage product, spatially-
averaged sea-surface temperatoreduct.
Mutlow [7] also $ates that a futurproduct
“possibly a vegetation indeprodwct” will

be added to this list in the future.

This study uses the gridded brightness
temperature/reflectance data products,
including the optional pixel
latitude/longitude, X/Y coordate offsets,
and cloud-clearing/land-flagging records.

The cloud clearing tests implemented by
RAL were designed for the ATSR-1
instrument and for optimum performance
in detecting @ud over sea saides. The
tests, described in Zavodst al. [9] and
Joneset al.[2] are:

* 1.6um histogram test,

e 11um spatial coherence test,

e gross cloud test,

 thin cirrus test,

* medium/high level cloud test,

» fog/low stratus test,

e 11/12um nadir/forward test,

e 11/3.7um nadir/forward test.

As the list shows, within the formal RAL
cloud-clearing scheme, no use is made of
the additional visible channels on ATSR-2.



V. CLouDb DETECTION
(a) Background

Shin et al. [10] describe four

characteristics of clouds:

e clouds are usually brighter than the
underlying surdce,

e clouds are usually colder than the
underlying surdce,

» the presence of clouds increases the
spatial  variabilty of apparent
temperature,

» the spectral rg@nse of clouds are
different from that of the surface.

These characteristics are obviously of

great usdor detecting abud over a surface

such as the oceans, which are usually dark

(low reflectivity), warm, of low spatial

variability, and have very different spectral

responses to clouds. Over land auds
however these broadedtures are more
difficult to apply. Land surfaces contain

many features of higher reflectivity (e.g.

sand, rock and at some wavelengths

vegetaton). Land suiices also include
features at low temperatures (snow and ice
at northerly latitudes and high altitudes).

Land surfaces contain such a wide variety

of materials that they also exhibit high

spatial variability, and as has already been
mentioned, some land surfaces exhibit
similar spectral rgmnses to clouds.

A large problem with cloud etection lies

in the fact that no single algorithm can
effectively detect dud for all image
scenes. This has lead to the development
of algorithm packages that include a suite
of algorithms that are used to analyse an
image. Kriebekt al.[1] describe a method
for the degction of cbud in AVHRR data
that employs five tests, labelling pixels
cloud free, partially cloudy, fully cloudy,
and snow/ice. The method has a common
feature of many multi-algorithm packages,
for surface products, all the tests must
declare a pixel cloud free for the scheme to
assign it that class. The converse is true if
cloud products are required.

The method presented in this paper uses a
fuzzy classification algorithm and a
knowledge-based system. A pilot scheme

is presented that uses only the Oyb%
channel.

(b) Theory

Fuzzy sets exist as a set of ordered pairs
where each membex, of the set, , has an
associated membership valye,(x), this
can be said to denote the degree of truth
that a given element is a member of a
given set (1). This membership value is
given by a defined membership function.

={(x 1 () [xOX} (1)

If the membership function is defined such
that its range of possible values is between
0 and 1, the degree of membership can be
interpreted to be theroballity that a
given element is a member of a given set.

In this study the sets that have been
defined are:

* clouds,
e water,
e urban,
e rural,
e agriculture,
» forest.
These sets then have membership
1(x-w)
_ 2 2
p.(x)=ez ¢ @

functions defined for them using a simple
un-normalised distribution curve (2). The
membership valueu (x) is given as a
function of w (the mean of the set) ara
(the standard deviation of the set).

The mean and standard distributions have
been defined using spectral reflectance
profiles for a variety of suace types
detailed by Bowkeret al. [11]. One
hundred and fifty-six profiles were



categorised and used to calculate the
required values foeach of the love sets.
Figure 1 shows the calculated membership
profiles for the givencategories in the

0.55um channel.

(c) Data Set

The classifier has been tested against two
data sets. The first is a simulated data set
(see figure 2) produced using Modtran 4.
This data set contains tweriive different
simulated targets.
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Figure 1
Plot of membership value vs %reflectance

The next stage in processing is to calculate
the membership values fagach image
pixel for each set using2). A matrix is
produced of membership values feach
class, each cellacresponding to an image
pixel. Using fuzzy sets the mean and
standard deviations foeach set are now

re-calculated using the image pixel
reflectances.
The algorithm then re-calculates the

membership values using (2) and atiers
through the outlined process, until a stable

set of means and standard deviations are

achieved. Stability is measured using a
least-squares approach.

Figure 2a
Simulated 0.58m channel data set
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Figure 2b

Simulated 0.58m channel data set — key

Figure 3
False colour composite ATSR-2 image

The second ata set is a real ATSR-2
image, taken of the southern United
Kingdom and English Channel on B7
April 1997 at 10.36am UTC (see figure 3).

The image is a gridded brightness
temperature-reflectangaroduct, complete
with the cloud flags produced by the RAL
cloud cetection scheme.

(d) Results

The pilot cloud étection scheme has been
applied to both data sets and the results are
shown as hard classifications (i.e. the pixel
has been classified according to its

maximum fuzzy set membership value) in
figures 4 and 5.

Figure 4
Classified simulated data set:
White = cbudy, Blue = clear

The classified simulated data highlights
two of the main problems of cloud
detection over lad. As can be seen from
figure 5 all of the cloud only classes were
successfully classified as cloud. Of the
clear classes however, the sandy pixels
were miss-classified as cloud, highlighting
the problem of cloudatection over desert
surfaces. The nus cases are miss-

classified, highlighting the problem of
detecting thin cud over land suaices.
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Figure 5
Classified0.55um image: White = dudy,
Green = clear land, Blue = clear sea



The real data set appears to give a better
classificaton, especially when viewed
against the product cloud flag (see figure
6). The fuzzy system clearly classifies a
more realistic quantity of cloud pixels over
land, but appears to need improvement
over sea surfaces.

i ; v .‘. :‘l,_.;'"hi

Figure 6
RAL cloud flag: White = cloudy,
Green = clear land, Blue = clear sea

V. APPLICATIONS

The direct applications of ipnoved cloud
detection over land areobvious, and
several have already been mentioned
earlier in this paper. The foundation of
many models of the atmosphere, the Earth
radiation budget, and land-atmosphere
interactions is in the data fed into them.
With access to iproved dta set$or land
surface regions better models can be
developed, and information can be derived
with greater onfidence in itsaccuracy.

There are many organisations researching
the influences on our environment that
would benefit from efctive cloud
detecton. The major organisations such as
the Inter-Governmental Panel on Climate
Change (IPCC) and World &feorological
Organisation (WMO) clearly stand out as
potential users. Smaller projects would

also benefit from the atection of
atmospheric  artifacts, for example
AEROCONTRAIL [12], a European
project ustying the efécts of aircraft
contrails on the climate. Thisonk is also
mirrored by a NASA pragct [13], and
contrail detection in AVHRR images has
already been undertaken and shown to be
possible by Weisst al.[14].

With greater commercial interest in
remotely sensed data at all resolutions
from a variety of ectors (e.g. Re-
insurance and Stock Market) it is of utmost
importance to provide newath sets that
meet consumer needs. The development of
betterproducts is an essential part of the
process towards the self-sustainability of
the Earth observation industry, from
instrument design and manufacture, to data
processing.

VI. CONCLUSIONS

The requirements for and apmaltions of
improved cloud dtection over land
surfaces have been shown. pkototype
detection system has been developed using
a synergy of fuzzy classification and
knowledge-based analysis, with an aim to
utilise the benefits of both techniques.

The knowledge-based approach allows an
unsupervised analysis to take place based
on a priori information. The main benefit
of fuzzy classification is that the
membership values fagach pixel in each
class can be interpreted as a measure of
confidence in the clasgsfaton. It is
therefore beneficial to etain this
information in the final output of the
detecor. For example, it is more useful for
a researcher to know that a pixel has been
classified with a 92% certainty in its
correctness, than simply to be told its
classification.

With respect to dud etection over land
surfaces, this prototype fuzzy cloud



detector shows some jmrovement over
the existing RAL cloud flagging process.
Flaws in the system highlight several of
the problems of cloudedection over land,
although, as the literature shows, it is
unlikely that any one method or algorithm
will prove adeqate to the task of global
cloud cetection.

Current work involves the expansion of
the detector to include algorithms using
additional ATSR-2 wavelengths. Future
work on this research pegjt is planned to
include the forward view channedth, and
spatial analysis techniques. The current
knowledge-base of refttanceprofiles is
planned to be expanded, or superseded by
ISCCP data. Modelling of the data set
under analysis using Modtran4 will be
undertaken and simated data sets of
increasing complexity will be produced,
from which quantifiable performance data
will be generated.
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