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ABSTRACT: Unsupervised classification
methods, when combined with robust
information vectors and feed forward neural
networks for labelling, provide a basis for
very accurate cloud detection in satellite
data. Preliminary results, obtained by
applying these methods to satellite data,
show the usefulness of these methods for
cloud detection. Anticipated directions for
our ERS-II, ENVISAT and EOS-AM
investigations, which will utilize a
combination of data from the family of
ATSR instruments, MERIS and MODIS,
will emphasize a suite of complementary
atmospheric, terrestrial and oceanic
applications.

I. INTRODUCTION
A. Importance of Accurate Cloud

Detection in Satellite Scenes over the
Ocean and Cloud/Snow Separation
Over Land

1. General Considerations
The ability to accurately and

automatically segment clouds in satellite
(ATSR, MODIS and MERIS) scenes over
the ocean and land is important for a wide
range of disciplines in the earth sciences
(JSC Working Group, 1997). Clouds, for
example, significantly affect the net heating
and cooling of the atmosphere and
underlying ocean by modifying the short-

wave (Hobbs and Deepak, 1981) and long-
wave (Hunt, 1982) radiation. This net
radiative heating governs the therm-
odynamics and dynamics of the atmosphere,
which in turn influences the formation and
dissipation of clouds (Matveev, 1984). The
potential feedback effects associated with
this cloud-radiation interaction are one of
the greatest sources of uncertainty in
determining the relation between changes in
climate and changes in external conditions
such as solar radiation and atmospheric
carbon dioxide concentration (Henderson-
Sellers, 1984; Ramanathan, 1987).

2. Importance for Climate and Global
Change Modeling
Many of the above cited issues are

important for improved understanding of
global change processes and are being
studied using climate models. Such models
generally parameterize the atmospheric
radiative transfer process, and hence also
parameterize the effects of clouds
(Henderson-Sellers, 1984; Ramanathan,
1987). Moreover, clouds are the most
important transient phenomenon incor-
porated into climate models (Henderson-
Sellers, 1984). Unfortunately, both oceanic
and land cloud climatologies suffer from
deficiencies which affect their usefulness in
climate models. The widely used cloud
climatology of London (1957), for example,
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was compiled from surface-based obser-
vations and the oceanic data are particularly
sparse and uncertain. Moreover, terrestrial
cloud climatologies, while more common
than their oceanic counterparts, suffer from
the more difficult problems associated with
accurate cloud detection in satellite scenes
over highly heterogeneous land surfaces.

3. Importance for Sea Surface
Temperature
One of the fundamental diagnostic

parameters for climate change is sea surface
temperature (SST). Many factors, however,
can affect the accuracy of SST retrievals
derived from satellite-observed radiances.
Atmospheric aerosols, for example, scatter
radiation and directly affect the observed
brightness temperatures (BT) in the visible
region of the spectrum (Zege et al., 1991).
These effects can compromise cloud
detection especially if visible data (near the
blue region of the spectrum) are used.
Atmospheric water vapor is known to
attenuate infrared signals and hence
degradate SST retrievals (McMillin, 1975;
Deschamps and Phulpin, 1980). Perhaps the
most significant source of residual error in
SST retrievals, however, is the presence of
undetected clouds in the scene (Henderson-
Sellers, 1984: Robinson, 1985; Simpson and
Humphrey, 1990). In fact, cloud
contamination has been cited as one of the
major factors, limiting more accurate
MCSST retrievals even from improved
sensors such as the Along Track Scanning
Radiometer (ATSR) on the ERS-1/ERS-2
satellites (Harris et al., 1995; Jones et al.,
1996a, b; Simpson et al., 1998a). Moreover,
cloud-free satellite-derived MCSST fields
are also important for analyzing a wide
variety of oceanic processes (large-scale
surface circulation (Yan and Breaker, 1993),
mesoscale eddy dynamics (Koblinsky et. al,
1984), and mixed layer dynamics (Yan et.
al, 1990)).

4. Importance of Cloud/Snow Cover
Separation to Climate and Global
Change Processes
Snowpack that accumulates in the

western United States each winter is a
critical resource for water supplies and
ecosystems. Year-to-year variations in the
likelihood of plentiful snowpack, of sudden
and catastrophic snowmelt and early or late
snowmelt, are associated with variations of
the global and, especially, the Pacific
climate system. The best understood of these
climate variations are the El Niño Southern
Oscillation (ENSO) processes (Allan et al.,
1996) that form on an irregular basis in and
above the tropical Pacific Ocean,
influencing weather (Ropelewski and
Halpert, 1987; 1989), snowpack (Cayan,
1996) and streamflow (Cayan and Webb,
1992; Dettinger et al., in press) throughout
the western United States. Traditionally,
accurate estimates of areal extent of snow
cover from satellite data have been difficult
to obtain (Simpson et al., 1998b). The new
wavelength bands on MODIS and the ATSR
family of sensors provide a potentially
fruitful way to obtain improved estimates of
areal extent of snow cover. New snow-
related products to be derived from these
data are of critical importance to climate and
global change models (effects planetary
albedo) and to several practical applications
such as water resource management in the
western United States, Europe, and parts of
Africa (Morocco).

B. Overall Approach and Economies of
Scale

Clearly, the stability of the entire
satellite retrieval process (calibration, cloud
detection, geophysical retrieval, validation)
is important for: 1) improving the quality of
satellite-derived skin SST; 2) conversion of
the skin SST to bulk oceanic mixed layer
temperature; 3) improving our under-
standing of ocean circulation; 4) improving
the statistical reliability of satellite-based
cloud climatologies over both land and
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ocean; and 5) improving our estimates of
areal extent of snow cover. Of special
importance is the need to validate each
product with the best available in situ data.
Validation provides both a way to quantify
residual error in products and a feedback
mechanism to improve the stability of the
entire satellite retrieval process. These issues
relate directly to the ongoing objectives of
many international programs such as the
International Geosphere-Biosphere Program
(IGBP).

Economies of scale provide a basis
for producing the above set of
computationally related (although geo-
physically distinct) variables from ATSR,
MODIS and MERIS data. Clouds must be
identified in order to produce valid SST.
Residual information in the cloud field can
be simultaneously processed with minimum
additional effort to produce cloud
climatology. Optimal cloud detection over
the ocean, in turn, requires that the land and
clouds over land be segmented from the
ocean and clouds over ocean data. Given the
availability of 1.6 µm and other visible and
mid-infrared data, it seems imprudent not to
simultaneously process the land components
of the scene as well. Moreover, concurrent
processing of these different geophysical
fields from the same original satellite data
greatly reduces I/O inefficiencies and
overall computational time compared to the
computational resources that would be
required if each group of products (ocean,
atmosphere, land) were processed separately
from the original data. Hence, our overall
plan enhances the cost/benefit ratio to the
climate change community.

II. DIFFICULTIES WITH ACCURATE
CLOUD DETECTION IN SATEL-
LITE SCENES

The simplest approach for cloud
detection in a scene is to apply a set of static
thresholds (albedo, temperature) to every
pixel in the scene. This method can fail for
several reasons: 1) subpixel clouds and

cloud-pixel misalignment (i.e., the field of
view of the radiometer falls on the edge of
the cloud) can lead to errors because the
distribution of radiances is non-uniform
within the pixel (Shenk and Salomonson,
1972; Simpson and Humphrey, 1990); 2)
variations in BT result from pixel specific
variations in viewing and illumination
geometry (Dalu, 1985; Foody, 1988); 3)
sensor aging (Duggin, 1985); and 4) the
spectral response of clouds varies with cloud
type and height (Liljas, 1987).

Spatial coherence methods (Coakley
and Bretherton, 1982) have an advantage
over static threshold methods because they
utilize the local spatial structure of the
infrared radiance field to determine cloud-
free and cloud-covered pixels and infer
partially filled fields of view. Spatial
coherence methods can fail, however, when:
1) the cloud system in the image is
multilayered (which often is the case); 2) the
clouds everywhere in the scene are smaller
than the instrument's field of view; 3) the
clouds have variable emissivity (cirrus
clouds); and 4) cloud-free strong ocean
thermal gradients exists in the scene (see
examples given by Gallaudet and Simpson
(1991)).

Other approaches (Saunders and
Kriebel, 1988) combine static thresholds,
spatial coherence tests and geometric
viewing criteria. This approach can be
limiting because the thresholds used are both
static and regionally specific. Moreover,
Gallaudet and Simpson (1991) have shown
that such methods (like spatial coherence
methods) often erroneously interpret regions
of cloud-free strong ocean thermal gradient
as cloud.

III.CLOUD AND CLOUD SHADOW:
SIGNAL VERSUS NOISE

A. Cloud and Cloud Shadow as Signal
For atmospheric applications, both

cloud and cloud shadow in satellite data are
major signals. Accurate retrievals of short-
wave and long-wave fluxes require



4

information on clouds. Cloud shadow can be
used to estimate both cloud base (Gurney,
1982; Berendes et. al., 1992) and cloud top
height  (Simpson et. al., 1999a). Cloud
shadow is also important for proper
numerical simulation of mesoscale atmos-
pheric circulations that lead to major
convective storm systems (Bailey et. al.,
1981; Segal et. al., 1986; Lipton, 1993;
McNider et. al., 1995).

B. Cloud and Cloud Shadow as Noise
A significant source of residual error

in sea surface temperature (SST) retrievals is
the presence of undetected clouds in the
scene (Henderson-Sellers, 1984; Robinson,
1985; Simpson and Humphrey, 1990;
Simpson et. al., 1998a). Even for data taken
with advanced instruments, such as the
Along Track Scanner Radiometer (ATSR)
family of sensors, cloud cover has been
reported as one of the major factors limiting
SST retrieval accuracy (Jones et. al., 1996a,
b), especially the detection and retrieval of
low-lying marine stratiform cloud. This
cloud type, in particular, predominates in
certain geographical regions—namely
continental up-wellings, which provide
conditions of warm continental air overlying
cold water. Likewise, the effects of subpixel
cloud contamination on SST retrieval are
important as documented by Harris et. al.,
(1995).

Both cloud and cloud shadow can
affect the accuracy of satellite-derived
vegetation estimates. Such estimates are
important in global change models because
terrestrial vegetation affects the climate
system (through hydrometeorological
feedback loops) on a wide range of spatial
and temporal scales (Verstraete and Pinty,
1991). While early studies have emphasized
the effects of aerosols, Rayleigh scattering,
dust, and clouds on vegetation products
(Normalized Difference Vegetation Index
(NDVI)), more recent work has also
highlighted the importance of undetected
cloud shadow as a contaminant in satellite-

based vegetation estimates (Simpson and
Stitt, 1998)

IV. APPROACH
A. Cloud Detection

A hybrid cloud detection procedure
is under development. It consists of an
unsupervised segmentation of the scene into
its natural groups using a new clustering
procedure developed by Simpson et. al.
(1999b) and labelling of the segments into
geophysical classes (e.g. cloud, clear land,
clear ocean) using a feed-forward neural
network (FFNN).

The clustering algorithm uses a new
splitting procedure which allows for
arbitrary orientation of the splitting decision
surface relative to the decision space. This
feature overcomes problems in the historical
ISODATA procedure of Ball and Hall
(1964) and significantly improves average
execution time (see Simpson et. al., 1999b
for details).

The FFNN labeller has been
developed as part of the Geostationary
Meteorological Satellite (GMS) Pathfinder
Project. A procedure for efficient training
set development and subsequent learning by
the FFNN has also been implemented
(Simpson et. al., 1999c).

B. Data Fusion and Inter-Sensor
Calibration

Data fusion involves any mathemat-
ical/statistical process that maps data taken
on different space-time grids onto a uniform
space-time grid with known error estimates.
Data fusion makes possible an interpretation
of the scene physics not obtainable from a
single sensor and/or reduces the uncertainty
associated with data from individual sensors.
The diversity of satellite and in situ data
types to be used requires the use of sound
data fusion methods for meaningful results.

We will determine and implement the
optimal data fusion method(s) for this study.
Wavelet transformations, multi-resolution
analysis (relational filter banks), and pixel
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level image data fusion methods will be
considered. Data fusion also can be done
successfully under a Bayesian formalism.
This approach requires a priori information
about the likelihood of change between the
acquisition times of the different types of
images.

As part of the data fusion process we
will cross-calibrate MODIS with ATSR-
2/AATSR using a nadir viewing, colocator
technique recently developed as part of
GMS Pathfinder (LeMarshall, Simpson and
Jin, 1999). Moreover, use of high temporal
resolution (every 30 minutes) GOES data
greatly reduces the reliance on a priori
information in the proposed application.
Therefore, we will also combine GOES data
(10 bit thermal resolution) with ATSR (12-
bit thermal resolution) to examine high
frequency variation (diurnal) in cloud cover
and SST in climatically important regions as
well as the temporal evolution of rapid
snowmelt events.

V. EXAMPLES
Selected examples (atmospheric,

terrestrial and oceanic) will be shown at the
ATSR workshop in Frascati, Italy June 23-
25, 1999. Examples will also be available
for web downloading after 6 July 1999.
Authorization to download these examples
can be obtained by email request to
admin@landlub.ucsd.edu after 6 July 1999.

VI. CONCLUSIONS
Accurate cloud, cloud shadow

detection and calibration are important steps
for building a stable retrieval process for
geophysical products from MODIS, MERIS
and ATSR data. Throughout this project we
will implement the procedures cited herein
to improve the overall accuracy and stability
of geophysical products derived from
MODIS, MERIS and ATSR data.
Economies of scale allow for simultaneous
processing and analysis of a set of
complimentary atmospheric, terrestrial and
oceanic products.
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