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Abstract

The high interest to derive digital elevation models from interferometric
SAR data stimulated the research to
optimally and numerically
efficient solve the phase unwrapping problem. Several solutions
have been
proposed. We address the solution of the phase unwrapping
stated as a least squares problem and its
multiresolution solutions.
The multiresolution algorithms are computationaly efficient implementations
of the
phase unwrapping solution, the wavelet implementation is
systematic and allows to deal with the noise in the
data.
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Introduction

The paper is a short presentation and theoretical comparison of
multigrid, finite element, and wavelet methods to solve the partial
differential equation problem for applications in Interferometric
SAR phase unwrapping.

The phase unwrapping: problem statement

The phase unwrapping is the key step in recovering the terrain
elevations from Interferometric SAR data. The problem is to find
an
estimate of the phase values known the wrapped noisy phase
observations. The problem is ill-posed and the solution requires
regularization .

Several solutions have been proposed. We refer only the ones based
on the minimization of the mean square error between the
desired
phase gradient and the observations of the wrapped phase gradient.
The problem is equivalent to solve a Poisson equation
[Ghiglia].

The multigrid algorithms

[Pritt] proposed as a solution for phase unwrapping the weighted
least squares method implemented as a multigrid Gauss-Seidel
relaxation.
The multigrid algorithms are iteratively renewing the solution
of the partial differential equation in finer grids using the
results from a coarser grid. The multigrid algorithms relies on
transforming, by transferring the problem to coarser grids, the
low
frequency components of the errors into high frequency components
which can be removed by the Gauss-Seidel relaxation. The
transfer
to coarser grids is implemented trough a restriction operator,
and the transfer to finer grids with a prolongation operator.
These are scale operators similar to wavelet bases of functions
but non-systematic mixing the hierarchical decomposition and the
resolution steps.

[Fornaro] introduced a finite element method for the phase unwrapping
method. The finite element method is computationally
efficient
in a multigrid implementation, but taking into account the weighting
the efficiency is reduced.

The advantage of the multigrid algorithm is the fast convergence
and the way to accommodate the weighted least square solution.

The wavelet solution

The wavelet method assumes to decompose the differential operators
in a wavelet basis.

[Daubechies] introduced a parameterized family of orthonormal
system of functions: the compactly supported wavelets. They are
generated from a scaling function and its dual, the wavelet, by
dilatations and translations. The elements of the system of
functions
have compact support and are continuous, the support of the basis
functions, due to the rescaling, becomes smaller for
larger scaling
index. The coefficients of the expansion can be computed with
an O(N) algorithm.

[Mallat] demonstrated the multiresolution representation of a
given function. Using the scaling and wavelet functions one can
represent a function in a system of coarser-finer scales. The
Mallat transform consists of convolutions with the filters defining
the
scaling and wavelet function and downsampling.

[Wells] and [Glowinski] proposed to use the scaling functions
at a given scale as finite elements.

[Beylkin] and [Glowinski] introduced a method to solve elliptic
differential operators with Dirichlet boundary conditions in the
wavelet system of coordinates, by constructing the Green function
in O(N) operations. Once the Green function is obtained the
solution
reduces to a matrix-vector multiplication.

Comparison of the methods

The solution of the partial differential equation using wavelet
transforms have several advantages. In the wavelet system of
coordinates
the differential equations with boundary conditions are characterized
by diagonal preconditioner leading to operations
with sparse matrices
having the condition number O(1), resulting in O(N) algorithms.
The condition number is very good, as
consequence avoids instabilities,
minimizes the errors, and speed up the convergence.

The orthogonality of the wavelet systems allows a systematic and
simple mapping in between adjacent scales and also
encapsulation
of prior knowledge in the solution by disregarding certain wavelet
coefficients.

However the wavelets systems are not so easy to compute as finite
elements, but the transform is done only once, the number of
further
iterations compensate this drawback.

Both multigrid and wavelet are using hierarchical decompositions
and resolution steps. The wavelet methods for solving the
Poisson
equation are similar to the multigrid methods, but are using more
information: the orthogonal basis of the wavelet
decomposition.

The difference of the two methods is in the utilization of the
hierarchical decomposition: the multigrid methods mix the hierarchical
decomposition and the resolution steps, while the wavelet based
method are clearly separated.
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Conclusions

The numerical solution of partial differential equation using
wavelet decompositions is a new promising field. The emerged
methods
show a faster convergence, a better accuracy of the solutions
and, important for our problem - the SAR interferometry -
enable
us to deal in a systematic way with the noise of the process.

References

Beylkin G.,
On the representation of operators in bases of compactly supported
wavelets, SIAM J. on Numerical Analysis, Vol. 6, No.
6,
pp 1716-1740, 1992.

Beylkin G.,
On wavelet-based algorithms for solving differential equations,
preprint, CRC Press, University of Colorado at Boudler,
1993.

Daubechies I.,
Orthonormal bases of compactly supported wavelets, Comm.
Pure Appl. Math. 41, pp. 906-966.

Fornaro G., Franceschetti G., Lanari R., Rossi D., Tesauro
M.,
Interferometric SAR Phase Unwrapping via Finite Elements Method,
submitted to IEE Proc. Radar, Sonar, Navigation, 1996.

Ghiglia D. C., Romero, L.A.,
Direct phase estimation from phase differences using fast
elliptic partial differential equation solver, Optics Letters,
vol.14,
pp. 1107-1109, 1989.

Glowinski R., Rieder A., Wells R.O., Zhou X.,
A wavelet multigrid preconditioner for Dirichlet boundary
value problems in general domains, preprint, Computational
Mathematics Laboratory TR93-06, Rice university, 1993.

Mallat S.,
Multiresolution approximation and wavelet orthonormal bases
of L2(R), Trans. Amer. Math. Soc.315, pp. 69-87, 1989.

Pritt M. ,
Phase Unwrapping by means of Multigrid techniques for Interferometric
SAR, IEEE Tr. on GSRS, Vol. 34, No.3, pp. 728-738,
1996.

Wells R.O.,
Multiscale Applications of Wavelets to Solutions of Partial
Difference Equations, preprint, Dept. of Mathematics,
Rice
University, 1993.

Keywords: ESA European Space Agency - Agence spatiale europeenne, observation de la terre, earth observation, satellite remote
sensing, teledetection, geophysique, altimetrie, radar, chimique atmospherique, geophysics, altimetry, radar, atmospheric
chemistry


