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Abstract

Digital
elevation data is often affected by errors due to excessive interpolation
or to interferometric artifacts.
The local analysis of the DEM roughness
allows both the detection of these errors and the segmentation of the
elevation
data for a better understanding of the existing geological structures.
This analysis can be performed
by means of fractal dimension estimators.
We compare several fractal estimation methods and show that
those based
on the multiresolution (wavelet) data analysis yield the best results from
the point of view of
their segmentation capabilities. This is a natural
conclusion considering that fractals and wavelets rely on
many common concepts.
As an example we show an application in which SAR intereferometric artifacts
are
revealed and the elevation data is separated in different roughness
classes using fractal dimension
measurements and an unsupervised clustering
algorithm. 
Keywords: DEM,
fractals, wavelets, multiresolution, artifacts, segmentation

1 Introduction

Digital Elevation Models (DEMs) have become an important tool in many
remote sensing applications like e.g. SAR simulators,
orthorectification
of satellite and airborne images, classification of ground cover types,
Geographic Information Systems, etc. Still
in most of the cases, the resolution
of the DEMs derived from digitized topographic maps is unsufficient for
the requirements of the
corresponding applications. SAR interferometry
allows the achievement of much better resolutions, however this technique
is not
yet available on a large scale and the resulting surface is affected
by typical artifacts. The detection of the artifacts is an important
task,
especially in remote areas where no other digital elevation data is available
for comparison.

Relying on the observation that relief conserves the same statistical
characteristics over a wide range of scales, some DEM
characterization
techniques have been developed that perform a multiresolution analysis
of the elevation data. These techniques
use fractal models to measure the
local roughness of the DEM and extract derived information. In this way,
better interpolation
methods for higher resolution elevation data sets
have been developed (Yokoya and Yamamoto 1989, Polidori
et. al. 1991,
Franceschetti et. al. 1994)
and a better understanding of the geological and geomorphic processes has
been achieved (Huang and
Turcotte 1990,Clarke
and Schweizer 1991,Clarke 1988).

This work investigates the use of multiresolution techniques for the
characterization of DEM roughness and points out a method for
the detection
of errors and artifacts in intereferometric elevation models. The roughness
of a DEM is estimated locally by
measuring the fractal dimension of the
underlying model. Two fractal dimension estimators are compared: the power
spectrum
estimator and the wavelet-based estimator. The power spectrum
method was selected as a reference since it has often been
designated to
be the algorithm which achieves the best performance (Stewart
et. al. 1993, Schepers et. al. 1992).
Our approach
concentrates on the wavelet-based method and is motivated
by the fact that wavelets and fractals are closely related by the
concept
of scale and share many common properties (Akujuobi and
Baraniecki 1994). We compare the two methods both on
synthetic and
on real elevation data. The result of this comparison shows that the wavelet-based
estimator achieves a better
reliability of the measurements in terms of
their standard deviation and is better suited for the segmentation of fractal
images.

The paper is organized as follows. Section 2 gives an overwiev of the
fractal and wavelet theory emphasizing the common concept
of scale. Section
3 presents the results of a comparison between the spectral and the wavelet-based
fractal estimators based on
synthetic images. This comparison is performed
in terms of image segmentation capabilities, i.e. the algorithms are applied
to
image windows of small size and the obtained set of measurements is
analysed statistically. In the last section we discuss some
examples in
which the fractal analysis of DEMs reveals artifacts in the computation
of elevation data and allows the separation of
different roughness classes.

2 Elements of Fractal and Wavelet Theory

Fractals are mathematical objects that show the same structure when
examined at all possible scales (Mandelbrot 1982). Although
more formal definitions can be given, this qualitative characterization
expresses the very essence of the fractal phenomenon and
at the same time
represents the basis for all fractal analysis algorithms: the algorithms
check for fractal behaviour simply by
examining the object at several scales
(resolutions). The basic parameter characterizing a fractal object is its
dimension: while
non-fractal objects have dimensions given by integers
(1 for curves, 2 for surfaces, etc.), fractals will have fractional dimensions
since they represent transition structures between curves and surfaces,
surfaces and solid bodies, etc.

The statistics of roughness measurements has been shown to agree - in
a limited resolution range - with that of specific fractal
models and several
attempts have been made to characterize DEMs by means of the fractal theory.
The most popular model used
in this respect is the fractional Brownian
motion (fBm) model (Voss 1988). This model describes
a signal B(t) characterized by the
fact that its increments between
two moments of time t1 and t2 have a variance proportional
to a power 2H of the time lag |t2-
t1|. The parameter H
is called "Hurst exponent" (0<H<1) and is related
to the dimension D of the corresponding fractal by (Voss
1988) D = n + 1 - H, n being the topological dimension
of the space in which the fractal object is represented (n=1 for
fBm time-
functions, n=2 for fBm surfaces, etc.). D
will typically measure the "roughness" of the signal and most
fractal analysis algorithms
concentrate on an accurate estimation of D.
Note that fBm signals are nonstationary; this makes their analysis
both from the
theoretic and from the practical point of view quite difficult.
Several methods have been developed that try to cope with these
difficulties.

A classical algorithm for the estimation of D is based on the
computation of the time (space) averaged power spectrum of the
signal.
This power spectrum is represented in a log-log plot vs. frequency. It
can be shown (Voss 1988, Saupe 1988)
that if the
signal is a fBm the points of the plot will align along
a straight line. The slope of this line is directly related to the dimension
D of



the fractal and is usually estimated via a regression technique.
This method of fractal dimension estimation is called the power
spectrum
method and has been shown to yield very accurate estimation values
(Stewart et. al. 1993).

But other methods exist as well and deserve increasing attention since
they present some very useful features for different
applications. Our
research focuses on an alternative way for the estimation of D based
on the wavelet decomposition of fBm
signals. Just like fractals,
wavelets heavily rely on the scale concept, i.e. on the analysis of the
data at several resolutions (Mallat
1989, Wornell
1993). Given a signal x(t), a sequence A[m]x(t) of approximations
to x(t) is constructed, each A[m]x(t)
representing the signal
approximation at a given resolution (scale) m. If we define D[m]x(t)
the detail signal at resolution m to be
the difference between the
two succesive approximations A[m+1]x(t) and A[m]x(t), then
this detail signal can be written as an
orthogonal expansion of the signal
x(t) using some special basis functions that are called "wavelets".
The wavelet transform
represents thus a way of quantifying signal changes
from one scale to another. The wavelets themselves are obtained using the
concept of scale: they are all dilations and translations of a single function
called "mother wavelet".

The similar fundamental concepts of the fractal and wavelet theory have
stimulated several researchers to investigate this relation
in more detail.
The main result in this field is due to G. W. Wornell who showed that the
wavelet transform applied to a fBm signal
whitens the signal, i.e.
the transformed-domain samples at a given resolution m (the detail
signal samples) become stationary and
weakly correlated and both the theoretic
and the numeric analysis are much easier to perform. The direct estimation
of the fractal
dimension relies in this case on the the computation of
the detail signal variances at different scales. A maximum likelihood
estimation
algorithm (Wornell and Oppenheim 1992) can be used to
estimate from several variance measurements the fractal
dimension D.

3 Comparisons of Fractal Models

In order to compare the performance of the methods presented in the
previous section, a set of 256-by-256 spatially isotropic fBm
surfaces
ranging from dimension 2.0 to dimension 3.0 was generated. In each image,
the dimension was estimated locally in a
sliding window of size 32-by-32
pixels with the spectral and the wavelet-based algorithm (using Daubechies
wavelets with 4 filter
coefficients).

The comparison of the different estimation algorithms is performed mainly
by means of two parameters: the "mean of
measurements" and the
"uniformity of measurements". These parameters are plotted vs.
the real dimension of the fractal surface
in figure 1. The mean of the
measurements represents the mean value of the fractal dimension estimations
for all the positions of
the sliding window. For a uniform surface of fractal
dimension D, this mean should yield exactly the value D,
i.e. the ideal shape of
the mean plot is that of the diagonal line. The
uniformity of measurements is defined as the standard deviation of the
measurements about the measured mean. The uniformity plot should thus be
flat and of minimal value to characterize a reliable
estimation method.

The results of this analysis show that although the spectral
method has a better performance in terms of measurement accuracy,
the wavelet-based
method has a substantially better uniformity. A good uniformity is in our
opinion more important for image
segmentation than the exact estimation
of the numeric values for the fractal dimension, provided that the relation
mean vs. D
remains monotonic. This is the case for the wavelet-based
method, where the mean vs. D plot can be used as a LUT for the

correction
of estimated values. 



Figure 1: Mean and uniformity of fractal dimension measurements
for synthetic surfaces. Window size is 32 x 32 = 1024 pixels 

These results can be visualized by means of an example. Figure
2a shows a synthetic DEM (shown as a shaded relief) consisting of
a central
square of fractal dimension D=2.8 surrounded by a rectangular border
of fractal dimension D=2.2. Figures 2b and c show
the estimation
results for D (i.e. for the roughness of the relief) using the spectral
and the wavelet-based algorithms respectively
in a sliding window of size
32 x 32 pixels. The estimated numeric values are scaled linearly from [2.0,
3.0] to [0, 255] and are
presented as gray scale images. White corresponds
to a high fractal dimension ("rough") and black to a low fractal
dimension

("smooth"). To avoid problems generated by discontinuities
on the borders of the image, we did not compute the fractal dimension
in
a swath of 16 pixels on each image side. This swath is shown here in black.







Figure 2: Segmentation example for synthetic DEM consisting
of a central square of fractal dimension D=2.8 surrounded by a
border
of fractal dimension D=2.2. The dimension is estimated in a sliding
window of size 32 x 32 pixels. a) Original image, b)

Fractal dimension
estimated with the spectral algorithm, c) Fractal dimension estimated with
the wavelet-based algorithm 

Figure 2 confirms the conclusions of the mean and uniformity plots.
Due to the better uniformity of the wavelet-based estimation
algorithm
the fractal dimension map in figure 2b appears less noisy than the one
computed with the spectral method (figure 2c).
This leads to a better visual
appearance and to an easier thresholding for segmentation.

4 Application to Digital Elevation Models

The algorithms described in the previous section have been tested on
two elevation data sets that present different characteristics
and allow
us to consider different aspects of the fractal estimation process.

The first data set consists of three DEMs of the region of Davos, Switzerland
at resolutions of 50m, 25m and 10m respectively
(figure 3a). The DEMs were
obtained by digitization of elevation data from maps of different resolution.
For each of the DEMs the
fractal dimension was computed in a sliding window
of a size selected roughly proportional to the dimensions of the DEM (16
x 16
pixels for the 50m DEM, 32 x 32 pixels for the 25m DEM and 64 x 64
pixels for the 10m DEM).

Figure 3b shows the histograms of the estimated values for D
obtained using the wavelet-based method. First note that all the
histograms
show a single peak. This fact means either that the whole considered area
has a single fractal dimension or that it
consists of several areas with
very close fractal dimensions which cannot be differentiated by this method.
Note also that the peak
is at about the same position for all three histograms,
i.e. the structure of the terrain is invariant to scale. Since the data
of the
three DEMs was obtained by independent processes and not by interpolation
of one set to another, this example proves that the
terrain shows indeed
a fractal structure. The dimension of this fractal lies in the range of
D=2.1 to D=2.2. Similar fractal
dimension values have been
reported for DEMs of other areas as well (Polidori et.
al. 1991, Clarke and Schweizer 1991).

Figure 3c shows the histogram of the estimated values for D
using the spectral method. The variance of the measurements is
higher and
the estimation of D is less reliable. This result confirms the simulations
described in the previous section. 






Figure 3: Fractal dimension measurements for three DEMs of
different spatial resolution of the Davos area. a) DEMs presented as
a
shaded relief: left to right 50m, 25m, 10m; b) Histograms of fractal dimension
measurements for the DEMs in figure a) using the

wavelet-based method?
c) Histograms of fractal dimension measurements for the DEMs in figure
a) using the spectral method 

Our second example shows the possibility to use the estimation
of fractal dimensions to detect artifacts in elevation data. The data
consists
of two DEMs of an area along the river Rhine in Germany. The first DEM
(figure 4a) was obtained from digitized

cartographic information and has
a resolution of 25m, while the second one (figure 4b) was obtained by SAR
interferometry and
has a resolution of about 20m. Note also that the topographic
DEM is represented in geographical coordinates and the

interferometric
DEM is shown in range/azimuth coordinates which are slightly rotated with
respect to the geographical ones. In
spite of these differences the data
was not preprocessed (e.g. reinterpolated and rotated) since that would
have affected the

fractal structure of the images. 



Figure 4: a) Topographic DEM of an area along the river Rhine;
b) Interferometric DEM of approximately the same area 

The topographic and the interferometric DEM are analysed by
computing the fractal dimension in a sliding window of size 32 x 32
pixels.
The histograms of the values for D obtained with the wavelet method are
shown in figure 5a and b respectively. While for

the topographic DEM, D
lies in the range 2.0 ... 2.4 (the "usual" values for the fractal
dimension of terrain structures), the
interferometric data has much higher
fractal dimensions, ranging from 2.4 to 2.8. These values indicate that
the interferometric

method induces some artifacts leading to an unusually
high roughness of the elevation data. The estimation of the fractal
dimensions
provides thus a good method to detect the artifacts in an automatic way.







Figure 5: a) Histogram of fractal dimension measurements
for the topographic DEM; b) Histogram of fractal dimension
measurements
for the interferometric DEM 

Additionally, the histograms of D allow the segmentation
of the DEMs according to their roughness. An unsupervised classification
algorithm developed by Narendra and Goldberg (Narendra and
Goldberg 1977) looks first for the dominant modi of the image

histogram, then clusters the pixels around these modi, setting thresholds
in the valleys between them. The algorithm was applied
for the histograms
in figure 5 and resulted in the classification map of figure 6. As expected,
for both the topographic and the

interferometric DEM, the clustering algorithms
detected 2 classes of roughness: the first one corresponds to the mountain
area,
the second one to the plain area. These classes are presented here
in pseudocolors to allow for a better visual separation. 




 

Figure 6: a) Unsupervised classification of the topographic
DEM according to its roughness, b) Unsupervised classification of the
interferometric
DEM according to its roughness 

As a final experiment, another roughness measure, the standard
deviation of the elevation values in an image window is computed
for the
topographic and the interferometric DEMs and compared to the fractal dimension.
The result of this comparison is shown as
a scatterogram of the values
of the standard deviation vs. D (figure 7). Little correlation can
be seen between the two roughness

measures, especially in the case of the
interferometric DEM where the points are scattered all over the plane.
Obviously, the fractal
dimension characterizes the roughness of the relief
in a different way than the standard deviation of the elevation values.
While

the standard variation is a parameter that assumes a Gaussian distribution,
D relies on a fractional Brownian motion model which
is non-Gaussian.
The appropriateness of one of these measures is related to the assumptions
that can be made on the statistics of

the image. Usually these statistics
are not checked and an a priori assumption is made, based on some
physical and/or empiric
considerations. We feel that in this context a
more rigorous approach is necessary, implying some better mathematical
modeling.

This approach is the object of further study and research to
be reported soon. 



Figure 7: Scatterogram of the standard deviation of elevation
data vs. fractal dimension for the topographic DEM b) Scatterogram
of the
standard deviation of elevation data vs. fractal dimension for the interferometric
DEM 

5 Conclusions

The present paper presents an automatic method for the detection of
errors and artifacts in the generation of interferometric
DEMs. The detection
is based on the estimation of terrain roughness and uses the observation
that zones where interferometric
artifacts appear have a higher roughness
than "normal" terrain.

The roughness is measured assuming a fractal model for the elevation
data and is expressed by the fractal dimension, estimated
locally in a
small sized window. Several estimation methods are compared from the point
of view of their segmentation
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capabilities. Based on important conceptual
similarities between fractals and wavelets, we make the hypothesis that
wavelets are a
very appropriate analysis tools for fractal images. This
assumption is confirmed by experiments both on simulated and on real
elevation
data: wavelet-based fractal dimension estimators show the highest reliability
in terms of measurement variances and are
thus better suited for DEM characterization
than other methods.
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