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Abstract 
The objective of this study was to investigate an 
innovative approach for the estimation of Leaf Area 
Index (LAI) from EO data. To this aim multiangular 
CHRIS/PROBA data, from SPARC 2003 and 2004, 
were used in the inversion of PROSPECT-SAILH 
models using a numerical optimization technique based 
on Marquardt-Levenberg algorithm. The optimal 
spectral sampling to estimate LAI was investigated 
using a sensitivity analysis. From the same data set, the 
reflectance in the red and near-infrared bands, from the 
closer to nadir image, was considered in order to 
estimate the LAI using an empirical approach based on 
the CLAIR model. The LAI obtained from the 
empirical approach was finally employed as prior 
information in the physical based model. LAI values 
retrieved with the combined approaches were 
realistically estimated with a good accuracy (RMSE is 
0.51 m2m-2). 

1. INTRODUCTION 
Biosphere is one of the main components of the Earth’s 
system since it regulates exchanges of energy and mass 
fluxes at the soil, vegetation and atmosphere level. 
Global Circulation Models (GCMs), carbon cycle 
models and water models all use, as input, vegetation 
biophysical and biochemical parameters for describing 
those fluxes [1] [2]. Same parameters play also a 
critical role, on a much smaller scale, in precision 
farming and water management to describe the state of 
plants development and water needs.  
Hydrological models for the simulation of water flows 
in the soil-crop system need the characterisation of the 
canopy, based on variables such as Leaf Area Index 
(LAI), surface albedo, and crop height. For example, 
evapotranspiration fluxes for crops can be estimated, 
for given climatic conditions, knowing the cited 
canopy variables accordingly to the FAO methodology 
[3] [4]. 
New generation of satellite remote sensing sensors like 
CHRIS (Compact High Resolution Imaging 
Spectrometer) on PROBA platform [5] have 
hyperspectral and multi-angular capabilities, which 
allow for a complete exploitation of the spectral and 
directional information of the canopy radiometric 
measurements. From these data canopy variables can 
be estimated with a higher level of accuracy than usual 
methods and with little need for calibration of 
empirical functions [6] [7]. To this end complex 
reflectance models have been investigated in the recent 
past in order to describe the radiative fluxes from soil 

trough canopy and atmosphere up to the sensor [8]. 
Most of them are suitable to be used in inverse mode 
for physically-based estimation of canopy parameters 
from hyperspectral and multiangular observations.  
In this study, the well known PROSPECT and SAILH 
models have been set in inverse mode with 
multiangular and hyperspectral CHRIS/PROBA data 
collected over Barrax, a test area in the south of Spain. 
Data collected during the SPARC in July 2003 and 
2004 included extensive collection of canopy 
biophysical parameters. The main goal of the study will 
thus be to assess the accuracy of LAI retrieval achieved 
with a model inversion techniques based on Marquardt-
Levenberg optimisation algorithm using a prior 
information obtained from an uncalibrated empirical 
LAI-Vegetation Index (LAI-VI) relationship (CLAIR 
model). 

2. MATHERIALS AND METHODS 
The SPARC campaign was carried out in Barrax 
(N30°3’, W2°6’), an agriculture test area situated 
within La Mancha region in the south of Spain, from 
12 to 14 July 2003 and from 14 to 16 July 2004.  
The area has been analysed for agricultural research for 
many years thanks to its flat topography (differences in 
elevation range up to 2 m only). The land cover is 
dominated by large, uniform stands of alfalfa, corn, 
sugar beet, onions, garlic and potatoes. Around 35% of 
the area is irrigated while the remaining 65% is dry 
land. 
Hyperspectral, multiangular images were acquired by 
CHRIS/PROBA on 12 and 14 July 2003 with overpass 
times 11:07 and 11:32 (UT) (minimum satellite zenith 
angle 19,4° and 27,6°) respectively and on 16 July 
2004 (minimum satellite zenith angle 8,4°) with 
overpass times 11:24 (UT). Five images with different 
view angles Tab. 1 (along-track zenith angles) and 62 
spectral bands (from 410 nm to 1050 nm) per angle 
were acquired for each pass. The covered image area is 
14 km x 14 km (748 X 748 pixels) with a spatial 
resolution of 36 m (acquired in Mode 1). 
 
 

12/07/2003 56,0 38,8 19,4 39,2 56,2
14/07/2003 57,3 42,4 27,6 42,5 57,4
16/07/2004 55,2 36,6 8,4 36,6 55,2

Minimum satellite zenith angle

 
Tab. 1. CHRIS/PROBA acquisition during SPARC 
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2.1. Ground measurements 
Field non-destructive measurements of LAI and Mean 
Tilt Angle (MTA) were made by means of the digital 
analyser Li-cor LAI-2000 [9]; the manufacturer's 
recommendations were followed in deciding a 
measurement plan. For reducing the effect of multiple 
scattering on LAI-2000 measurements, the instrument 
was only operated near dusk and dawn (6:30-9:30 am; 
6:30-8:30 pm) under diffuse radiation conditions using 
one sensor for both above and below canopy 
measurements. In order to prevent interference caused 
by the operator’s presence and the illumination 
condition, the sensor field of view was limited with a 
180° view-cap. Both measurements were azimuthally 
oriented opposite to the sun azimuth angle.  
LAI measurements were taken with the instrument held 
a few centimeters above the soil within the days of 
image data acquisition. One measurement of ambient 
light was made with the sensor extended upward and 
over the top of the canopy at arm’s length. Eight 
below-canopy readings were then made. This pattern 
was repeated three times per spot, and the resulting 
twenty-four samples comprise one full set of 
measurements in each Elementary Sampling Unit 
(ESU). Finally, the centre of each ESU was geolocated 
by using GPS. This protocol yield a low Standard Error 
of measurement to assure 90% to 95% confidence 
interval. 
Leaf chlorophyll content, dry matter and water content 
were also measured. They were analysed and delivered 
from a team of the University of Valencia. 
Measurements of LAI and leaf chlorophyll content 
were carried out again in the laboratory from 
destructive samples in order to validate those taken in 
situ by a chlorophyll content meter (CCM-200; Opti-
Sciences, Inc.) showing a good correlation between the 
two data sets [10]. 

3. LAI RETRIEVAL 
Two different approaches have been selected in the 
retrieval of the LAI. First, a semi-empirical relationship 
between the Weighted Differences Vegetation Index 
WDVI and LAI [11] has been calibrated and tested 
with the available spectral information from the closer 
to nadir images. The second method used is based on 
the inversion of the PROSPECT [12] and SAILH [13] 
[14] models (PHS). The models have been tested in 
forward mode and the results were compared to CHRIS 
data in a previews work [15] [16]. 

3.1. Spectral Vegetation Index (VI)  
Several optical indices have been reported in literature 
and have been proven to be well correlated with LAI 
[17] [18] [19]. The WDVI, a simpler index related to 
orthogonal-based VIs, was chosen since it has been 
used for many years in our laboratories and so well 
know.  

For estimation of LAI was chosen the simplified model 
CLAIR based on the WDVI. We assume that all 
parameter except LAI and soil brightness are constant. 
An advantage of a simple semi-empirical model is that 
its inversion is very easy. A disadvantage is that it has 
to be re-calibrated for each new crop type and for each 
measurement condition. When changes in LAI are 
accompanied by systematic changes in other 
parameters like leaf slope and leaf colour, the near-
exponential reletinship between WDVI and LAI does 
not longer hold, so the model is not applicable[11]. 

3.2.  Radiative transfer models 
In order to simulate the top of the canopy reflectance 
we have chosen the PROSPECT model  for the 
simulation of the leaf optical properties coupled to the 
one-dimensional canopy reflectance model SAILH 
adapted to take into account the hotspot effect or the 
multiple scattering in the canopy [20]. 
Two fundamental criteria have led us to choose PSH 
model: i) simplicity, i.e. the possibility to have a rather 
good representation of the radiative transfer of the 
canopy using a relatively small amount of input 
parameters as well as limited computational 
requirements, and ii) reliability since the SAILH model 
has been successfully tested for a large set of crops, 
among which corn [21] and sugar beet [22] which were 
present in our study-area. 
The SAILH model assumes the canopy made of a 
uniform infinitely extended turbid medium, with 
infinitely small Lambertian scatterers randomly 
distributed within the canopy. The radiative transfer 
equation is solved by the four-stream approximation 
method: ascending and descending fluxes of direct and 
diffuse radiation are considered. A major limitation of 
SAILH model is that it badly takes into account 
vegetation architecture. It results that simulated 
reflectance of structured system as corn or of sugerbeet 
that has narrow leaves could be erroneous. The 
PROSPECT model assumes a uniform distribution of 
water and pigments throughout the leaves, and constant 
leaf surface roughness. The models require few canopy 
parameters: ro, tau (respectively single leaf 
hemispherical reflectance and transmittance provided 
by PROSPECT model as a function of the leaf 
structural parameter N, the leaf chlorophyll a+b 
concentration Ca+b, the equivalent water thickness Cw 
and the dry matter content Cm), LAI (leaf area index), 
LIDF (leaf inclination distribution function), geometry 
condition of observation (solar zenith and azimuth 
angles, view azimuth angle), the soil hemispherical 
reflectance and HOT (hotspot kuusk parameter). The 
hotspot parameter for circular leaves is roughly 
computed as the ratio between the average size of the 
leaf to the height of the canopy (0.01: small leaves, tall 
canopies; 0.5: large leaves, short canopies).  



3.2.1. Inversion procedure: Marquardt-Levemberg 
algorithm 

In order to retrieve the LAI by inverting the PSH, the 
independent Parameter Estimation program PEST [23] 
is used. It runs the PSH model, compares the model 
results with the observed (measured) values and adjusts 
selected parameters using Marquardt-Levenberg 
optimisation algorithm, until an optimal parameter set 
is found. This optimal parameter set is defined as that 
for which the sum of squared deviations between 
model-generated observations and experimental 
observations is reduced to a minimum; the smaller is 
this number (referred to as the “objective function”) the 
greater is the consistency between model and 
observations and the greater is our confidence that the 
parameter set determined on the basis of these 
observations is the correct one. Expressing this 
mathematically, we wish to minimise �, where � is 
defined by the equation: 
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where ri (the i’th residual) expresses the difference 
between the model outcome and the measured top of 
the canopy reflectance for the i’th observation and ωi 
expresses the observation weight. This process requires 
that an initial set of parameters have to be supplied to 
start off the optimisation process.  

3.2.2. The use of prior information and the initial 
parameter set in the parameter estimation 
process 

A global minimum in the objective function may be 
difficult to find in nonlinear problems as the inversion 
of the PSH model. For some models the task is made 
no easier by the fact that the objective function may 
even possess local minima. Hence it is necessary to 
supply an initial parameter set that is considered to be a 
good approximation to the true parameter set. A 
suitable choice for the initial parameter set can also 
reduce the number of iterations necessary to minimise 
the objective function. Moreover, the inclusion of prior 
information into the objective function can change its 
structure in parameter space, often making the global 
minimum easier to find (depending on what weights 
are applied to the articles of prior information). In fact, 
the aim of the estimation process is to lower the 
objective function to its minimum possible value 
(global minimum). If there is no prior information, the 
parameter estimation process is more likely to be 

trapped in local minimum. The process of iterative 
convergence towards the objective function minimum 
is represented diagrammatically for a two-parameter 
problem (LAI and HOT spot parameter) in Fig.1. 

 
Fig. 1. Robustness of the inversion procedure of 

PROSPECT SAILH models applied to synthetic data 

To enhance optimisation efficiency and to avoid 
minimisation algorithm to be trapped in local minima 
of the objective function it has been employed a 
strategy that combine BRDF model inversion and 
semi-empirical LAI-VI approach used as a source of 
prior information.  
The trick in implementing this strategy has been the 
selection of a weight to assign to the prior information. 
The weight applied to this prediction should be such 
that the contribution to the final objective function by 
the residual associated with the single observation 
group (reflectance in one angle) is of the same order as 
the contribution to the objective function by the prior 
information. If this is the case, then the model will not 
be producing an estimation which is exactly equal to 
the user-supplied priori information. Because of this, 
the estimation may have to be supplied as a little 
“worse than worst” or “better than best”. 
Fig. 2 shows the iterative improvement of initial LAI 
and HOT spot parameter toward the objective function 
minimum for the inversion of PSH model fed by 
CHRIS/PROBA data (310 observations: 5 angle and 62 
spectral bands) for an alfalfa stand with a LAI value of 
1.32. The initial value of the other parameters is 
showed in table 2. The weight of each observation is 
set to 1. The weight of the prior information (LAI=2.0 
from WDVI) is set to 0.1. The lowest objective 
function value and the highest correlation coefficient 
were achieved using the strategy that use prior 
information and initial parameters set to lower bounds. 

 



Fig. 2. Inversion procedure: (A) No Prior Information, (B) Near-optimal initial set of parameters (except for LAI), 
from references (C) Prior Information on LAI. The dot represents the LAI value (1.32) for an alfalfa canopy measured 

during SPARC2003 
 

 A B C 

Parameter Initial value 
Lower-
Upper 
bounds 

Initial value 
Lower-
Upper 
bounds 

Initial value 
Lower-
Upper 
bounds 

N 1 1-3 1,8 fixed 1 1-3 
Ca+b (µµµµg/cm2) 10 10-110 55 10-110 10 10-110 

Cw (g/cm2) 0,022 0,01-0,03 0,022 fixed 0,022 0,01-0,03 
Cm (g/cm2) 0,001 0,001-0,02 0,007 fixed 0,001 0,001-0,02 

LAI (m2/m2) 6 0,3-8 6 0,3-8 6 0,3-8 
HOT 0,5 0,001-0,5 0,5 0,001-0,5 0,5 0,001-0,5 

Esky (%) 0,16 fixed 0,16 fixed 0,16 Fixed 
Average leaf 
inclination 45° free 45° fixed 45° Free 

       
Objective function 

value 0,12*104  0,064*104  0,052*104  

Correlation Coeff. 0,9945  0,9971  0,9976  

Iteration number/ 
Total model calls 8/107  7/49  12/156  

Time (sec.) 15,5  7,6  22,5  

Tab. 2. Model parameter set and optimization results 

 

3.2.3. Optimal spectral sampling 
As known, there is a high correlation between bands in 
hyperspectral data, especially between adjacent bands 
[24]. The number of spectral bands is not simply equal 
to the number of information dimension because of the 
existence of band correlation and data redundancy. 
Therefore, two different approaches based on 
references information and on a sensitivity analysis 
have been employed to evaluate the optimal spectral 
sampling for leaf area index retrieval. First, the optimal 
spectral sampling to estimate LAI was chosen 
according to data quality, atmospheric correction and 
literature. Guanter reports that real CRHIS/PROBA 
data present important calibration problems, especially 
around 0.5 and 0.85 nm [25]. Even bands in the 
extremes of the spectral range showed some 
discrepancies in atmospheric correction. To estimate 
LAI some wavelengths were selected in visible (516, 
536, 558, 579, 680 and 685 nm), in the red edge (702, 
747 and 769 nm) and in the infrared (776, 814, 883 and 
932 nm) [26]. So, a set of 14 wavelengths was selected 

for each view direction. In a second step, in order to 
evaluate more accurately the optimal spectral sampling 
for CHRIS/PROBA data, the composite sensitivity of 
each observation was computed. This is the magnitude 
of the jth row of the Jacobian matrix multiplied by the 
weight associated with the observation, this magnitude 
is then divided by the number of adjustable parameters 
(LAI, Ca+b and HOT). It is thus a measure of the 
sensitivity of the observation j to all parameters 
involved in the parameter estimation process. Thus, it 
may be possible to characterize the observations made 
at nearly the same wavelength with the same 
information content and to omit one or more of these 
observations from the parameter estimation process in 
order to reduce the redundant information. 
For this aim, the reflectance of an alfalfa canopy of 
LAI 1.32 from CHRIS reflectance acquired during 
SPARC2003 was evaluated and the sensitivity for each 
observation was calculated in each view angle. Seven 
wavebands were considered in the visible (447, 548, 
568, 587, 611, 669 and 680 nm), six wavebands in the 
red edge (697, 709, 721, 734, 748 and 762 nm) and 
four in the infrared (776, 783, 839 and 893 nm). 

A B C 



4. RESULTS AND DISCUSSION 

4.1. LAI from spectral vegetation index 
In order to estimate LAI applying the model CLAIR 
(Eq. 2) it is necessary to identify the soil-line slope, to 
calculate the WVDI and to estimate the empirical 
parameters WDVI∞ and α using ground measurements. 
For the closer to nadir images, different bare soil 
surface were identified and their corresponding 
reflectance values in bands 24 (663 nm) and 46 (831 
nm) were plotted. Linear regression techniques were 
applied to determine the slope of the so called soil line 
that varies from 0.9 (12/07) to 1.1 (12/07). The WDVI∞ 
values, that is the asymptotical value of WDVI for 
LAI→∞, ranges from 64 (14/07) to 68 (12/07).  
The value of α was estimated by using 9 and 15 field 
measurements for the images of the 12th and 14th of 
July, respectively. The value of α was determined for 
each field measurement by inversion of the expression: 
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The value of α was in the range [0.19; 0.72]. The final 
value was taken in correspondence of the minimum 
error between observed and estimated LAI. It resulted 
0.47 for the 12th and 0.40 for the 14th of July, leading to 
an average error of 16% and 25% in the estimation of 
LAI, respectively. The empirical relationship has been 
validated by using 40 independent field measurements. 
The correlation between measured and predicted LAI, 
evaluated in terms of root mean square error, is shown 
in Fig. 3. The RMSE ranges from 0.46 m2m-2 (12/07) 
and to 0.59 m2m-2(14/07) calculated for all the crops in 
the study area. 
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Fig. 3 Measured (LICOR LAI-2000) vs estimated 

(model CLAIR) LAI for closer to nadir view from the 
14th of July (SPARC 2003) 

 

 

 

 

4.2. Optimal spectral sampling 
Starting from the optimal parameter set that provides 
the best estimation performances the optimal spectral 
bands were selected from all angular data using the 
sensitivity information of each observation. 
In order to evaluate the inversion performances using 
the selected bands from the references and from the 
sensitivity analysis we set up the initial parameter 
value as in Tab. 1 (case C) and tried to estimate the 
LAI. Results showed that only a limited number of 
bands were required for biophysical variable estimation 
and that when the number of bands used increases, the 
extra bands added only some noise. 
 

Parameter Estimated Lower limit Upper limit Estimated Lower limit Upper limit

N 1,06 0,51 1,61 1,00 0,58 1,48
Ca+b (mgcm-2) 40,80 30,80 50,87 31,03 25,95 36,10

Cw (gcm-2) 0,022 0,022
Cm (gcm-2) 0,004 0,001 0,006 0,003 0,001 0,005

LAI (m2m-2) 1,21 1,08 1,35 1,30 1,17 1,43
HOT 0,001 0 0,001 0,001 0 0,006

Esky (%) 0,16 0,16
LIDF 45° 45°

Objective 
function value

Correlation 
Coeff.

Iteration number

Total model calls

Time (sec.) 35,47

94,89

0,9981

26

375

60,72

87,39

0,9982

18

262

fixed

fixedfixed

fixed

14 bands from references 17 bands from sensitivity analysis

 
Tab. 3. Estimation parameter for the two spectral 
sampling configuration and optimization results. 

The measured LAI is 1.32.  

 

The optimal spectral sampling for LAI estimation from 
CHRIS/PROBA data and the optimization results are 
presented in Fig.4 and Fig.5. Therefore, according to 
optimization results in terms of objective function 
value, correlation coefficient and inversion time, the 
optimal spectral sampling we decided to keep the 
optimal spectral bands from references. Thus, 
considering the whole CHRIS spectral bands and the 
optimal spectral sampling, a full set of five angular 
data was employed for the canopy biophysical 
variables estimation. First, the angular images have 
been co-registered, all bands stacked in one image and, 
for the available LAI measurement, have been 
extracted the reflectance value. The inversion results 
are presented in next session. Moreover, it was 
demonstrated from this step that when it is not possible 
to perform a sensitivity analysis for each data set or a 
statistical band selection it is still possible to estimate 
LAI just adding a prior information as showed in Fig.2 
and Tab. 1 (case C) in which the parameter LAI was 
estimated for an alfalfa stand with a good accuracy 
(measured: 1.32; estimated: 1.42) using all the spectral 
information.  
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Fig. 4. Optimal spectral sampling for CHRIS/PROBA 

data from 14/07 (closer to nadir view) vs. PROSPECT-
SAILH optimized response and results using selected 

bans from references 
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Fig. 5. Optimal spectral sampling for CHRIS data from 

14/07 image (closer to nadir view) vs. PROSPECT-
SAILH optimized response and results using selected 

bands from sensitivity analysis. 

4.3. LAI from radiative transfer modelling  
The first step was to invert the PSH model using 
CHRIS data from SPARC2003 and SPARC2004 on 
different development stages of alfalfa canopies. 
To this aim, 12 in situ measurements (from 1.2 to 4.8 
m2m-2) were selected and the corresponding reflectance 
values were extracted manually from the angular 
images as a mean value on a grid of 3x3 pixel. The 
initial parameter set in the LAI estimation process was 
set as in Tab. 1 Case C. The spectral bands were 
selected from references and the weight of the prior 
information from semi–empirical LAI map was set to 
0.1 (the observation value was 1). Fig. 6 shows the 
results. The accuracy in terms of RMSE is 0.5 m2m-2 
and the average inversion time is 35 sec per pixel using 
a personal computer based on 2 CPU of 2.6 GHz and 
1GB of RAM.  
The correlation coefficient (mean value 0.99) between 
modelled and observed reflectance values shows a 
good accuracy in the simulation of the bidirectional 
reflectance. 
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Fig. 6. Measured vs estimated LAI for different alfalfa 

canopies (12 samples) from SPARC2003 and 
SPARC2004 CHRIS data. 

The mean values of the other estimated parameters 
involved in the inversion process are: N: 2.24; Ca+b: 
29.4; Cw: 0.02; Cm:0.001; HOT:0.01 and LIDF: 45°. 
The inversion process was performed again using as 
initial parameter set the mean values of the parameter 
obtained from the previous optimization. Any further 
improvement was not possible to achieve and the 
RMSE achieved with this strategy is 0.56 m2m-2.  
In order to evaluate the error that can be produced in 
the estimation of LAI inverting the PSH model by 
using a prior information based on uncalibrated LAI-VI 
relationship, a noise was added to the prior 
information. Considering an error of +/- 20% on LAI-
VI the RMSE achieved on the new outcomes was 
0.59/0.53 m2m-2 while for an uncalibrated LAI-VI 
relationship the RMSE would be 1.00 m2m-2. 
The model inversion technique was thus applied to a 
wide range of crops (Corn, Potato, Sugarbeet, Onion 
and Garlic) with different geometrical structure and 
biophysical proprieties. First, the inversion was carried 
out using all the spectral information. The RMSE, 
evaluated on 40 in situ LAI measurements, increases 
drastically to 1.1 m2m-2. Employing the optimal 
spectral sampling and a near-optimal initial parameter 
set for each crop type (as show in Tab. 4) the RMSE 



results in 0.96 m2m-2. LAI is constantly 
underestimated. This trend let us suppose that the 1-D 
radiative transfer approach used in this work model is 
inadequate for this aim. 
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Fig. 7. Measured vs. estimated LAI for Barrax site 

during SPARC2003.  

Parameter Initial value
Lower-
Upper 
bounds

Initial value
Lower-
Upper 
bounds

Initial value
Lower-
Upper 
bounds

N 1,3 1,3-1,6 1,5 1-3 1,5 1-3
Ca+b (mgcm-2) 37 30-60 60 20-100 50 20-100

Cw (gcm-2) 0,022 0,01-0,03 0,022 0,01-0,03 0,022 0,01-0,03
Cm (gcm-2) 0,004 0,001-0,02 0,006 0,001-0,02 0,007 0,001-0,02

LAI (m2m-2) 4 0,3-8 2 0,3-8 2 0,3-8
HOT 0,05 fixed 0,25 fixed 0,25 0,01-0,5

Esky (%) 0,16 fixed 0,16 fixed 0,16 0,09-0,2
LIDF 45° 51,7° 45°

Potato Corn Other crops

 
Tab. 4. Initial parameter set provided for the inversion 

of CHRIS/PROBA images 

Finally, the model inversion technique was adapted for 
an operational application implemented in Matlab 
software. This procedure was directly applied to 
CHRIS images. In order to reduce the registration error 
and the high computational requirements the data were 
degraded to a spatial resolution of 50 m. A land use 
map provided the model inversion with the initial 
parameter set needed and a NDVI map lets start the 
optimization process for NDVI value greater of 0.2. 
Fig. 8 shows a LAI map derived from CHRIS data 
inverting the PSH model by using a technique based on 
the optimization of the Marquardt-Levemberg 
algorithm and prior information obtained from a 
generalized empirical approach. 

 
Fig. 8. LAI map derived inverting PROSPECT-SAILH 
models by using angular CHRIS data of 14th July 2003. 

5. CONCLUSIONS 
The data presented here provide good evidence that 
multi-angular and hyper-spectral remote sensing 
approaches may have real potential for estimating LAI 
and other biophysical parameters of agriculture crops 
as alfalfa (RMSE 0.5 m2m-2). In spite of the limitations 
of the radiative transfer model assumptions the 
PROSPECT SAILH produced satisfactory results for a 
wide range of crops (RMSE 0.96 m2m-2).  
The incorporation of a prior information based on 
estimation of LAI from WDVI improves inversion 
results and compensates for initial assumptions of 
PROSPECT and SAILH models. 
In the present work it has been confirmed as in 
previous studies that the reduction of spectral 
redundancy improve results of inversion. The 
CHRIS/PROBA mode 3 configuration may appear 
optimal in heterogeneous landscapes. Nevertheless, we 
should note that the sensitivity analysis was limited to 
the particular conditions of an alfalfa stand. Therefore, 
more accurate investigation has to be carried out on the 
hyperspectral and multiangular content of CHRIS 
imagery.  
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