ESA Ice Sheets CCl

Norwegian Space Centre Oslo, Norway 2011 March 15

Marcus Engdahl (ESA-ESRIN)

ESA I ce Sheets CCI: GCOS Requirements

Product: Ice Sheet elevation changes, supplemented by fields of ice velocity and ice mass change. (for mass-balance determination)

Requirements for satellite instruments and satellite datasets:

- FCDR of appropriate altimetry, for example through laser altimetry.

Supplemented by:

- Radar measurements, for example through consideration of the use of SAR, especially InSAR, to provide intermittent sampling of ice velocity.
- Satellite-based gravity field measurements, which should be further explored to detect time-varying changes in mass of water and ice on land.

GCOS (target) observational requirements:

Variable/ Parameter	Application	Horizontal Resolution	Temporal Resolution	Aocuracy	Stability
Surface Elevation change	Mass balance determination	100 m	30 days	$0.1 \mathrm{~m} / \mathrm{yr}$	$0.1 \mathrm{~m} / \mathrm{yr}$
Ioe velocity	Mass balance determination	1 km	30 days	$10 \mathrm{~m} / \mathrm{yr}$	$10 \mathrm{~m} / \mathrm{yr}$
Mass change	Mass balance determination	50 km	30 days	$0.5 \mathrm{~km}^{3} / \mathrm{yr}$	$0.5 \mathrm{~km}^{3} / \mathrm{yr}$

ESA I ce Sheets CCI : Focus

- Definition: "Ice Sheets" = the continental Ice Sheets of Greenland and Antarctica including their outlet ice streams and the ice-shelves they feed.
- Glaciers and ice caps have their own CCI
- The geographical focus of the Ice Sheet CCI shall be Greenland.
- A geographically limited area on Antarctica may be covered on a trial basis.
- The primary ECVs to be produced for ice sheet mass balance determination shall be:
- Surface Elevation Change (SEC)
- Main FCDR: ESA radar altimetry from 1991 onwards
- Ice Velocity (IV)
- Main FCDR: ESA SAR (\& InSAR) from 1991 onwards
- Additional auxiliary ECVs shall be produced depending on feasibility:
- These auxiliary ECVs are producible from the FCDRs required for the primary ECVs with relatively small extra effort.
- The auxiliary ECVs shall include at least:
- Grounding line location (from InSAR)
- Glacier front location for ice streams (from SAR)
- I ceberg calving rate (from SAR)

ESA I ce Sheets CCI : Satellite datasets

Altimetry

Satellite	Instrument	Note	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
ERS-1	RA		\square																								
ERS-2	RA																										
ENVISAT	RA-2																										
CryoSat-2	SIRAL	SAR \& InSAR mode																									
Sentinel-3	SRAL	SAR \& InSAR mode																									
IceSAT	GLAS	Laser altimeter																									

SAR \& InSAR

Satelite	Repeat Cycle	Note	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
ERS-1	mostly 35-days	AMI/C-band																									
- /ce Phases	3-days]																					
ERS-2	35-days	AMI/C-band																									
- ERS-1/2 Tandem	24-hours																										
- Proposed ice-phase	3-days																						\square				
ENVISAT	35-days	ASAR/C-band																									
- ERS-Envisat Tandem	28-minutes	X-InSAR Antarctica																				\square					
Sentinel-1a	12-days	C-Band																									
Sentinel-1b	12-days	C-Band																									
- Tandem 1a+1b	6 -days																										
TerraSAR-X (1st unit)	11-days	X-band																									
TerraSAR-X (2nd unit)	11-days	X-band																									
- TanDEM-X	0 (single-pass)	Global DEM																									
Radarsat-1	24-days	C-band																									
- Antarctica Mapping	24-days	Left-looking							\square																		
Radarsat-2	24-days	C-band																									
- Antarctica Mapping	24-days	Left-looking																		\square							
JERS-1	44-days	L-band																									
ALOS	44-days	PALSAR/L-band																									

ESA I ce Sheets CCI: ESA SAR Coverage over Greenland 1991-2010

ESA I ce Sheets CCI: Issues

SAR \& I nSAR for I ce Velocity

- Data availability \& processing effort
- Spatiotemporal coverage over Greenland
- Need for $3^{\text {rd }}$ party SAR data for part of the time- period
- Processing effort
- Processing of +100 kframes of SAR data
- InSAR-processing for ERS-1/2 Tandem and 3-day repeat data ($->$ grounding-line location), offset-tracking for the rest.

Radar altimetry for Surface Elevation Change

- Cross-calibration between altimeters
- ERS-1/2, Envisat, Cryosat
- Necessary corrections for mass balance
- Dry atmospheric mass correction + water vapour
- Ionosphere
- Tides
- Method?
- Crossover-method well established
- Along-track method could be tested.
- A suitable DEM required.

