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1 Linearised Retrieval

A linearised retrieval can be modelled as

(1)

where x is the vector of n quantities to be determined
(e.g., a profile of concentration of some molecule), y is
the set of m measurements used (e.g., infrared spec-
tra). xo represents the linearisation point, e.g., the
initial guess as to the solution, and y, the measure-
ments expected (the ‘forward model’) if the lineari-
sation point represented the actual atmosphere.

G = dx/dy, is the (n x m) ‘Gain Matrix’ which, in
the absence of significant constraints from regularisa-
tion or a prior: information, approaches that of the
weighted least squares fit (WLSF):
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G = (K'S/'K) ' KTs_! (2)
where S, is the measurement noise error covariance
matrix (discussed later) and K = dy/dx is the (mxn)
Jacobian matrix, defined by

3)

In practice, the problem is usually sufficiently non-
linear that an iterative approach is required. Never-
theless, the linearised version is useful for modelling
the error propagation as a perturbation about the
true state.

(4)

where Jy represents an error in either the measure-
ments (y) or the forward model (yo), and 6x the re-
sulting error in the retrieval.

y —yo=K(x—xp)

ox = Gdy

2 Covariance Matrices

While each element of the vector dy is assumed to
have a mean value of zero (i.e., no bias, but see sec-
tion 7) there may be correlations between errors in
different elements. These can be represented by the
(m x m) measurement covariance matrix, defined as

S, = ((6y)(dy)") (®)

where (...) denotes expectation value over a large
number of samples. In the absence of any correlation,
S, is just a diagonal matrix of the error variances of
each measurement.

Given the Gain matrix, we can then construct the
equivalent error covariance for the retrieval:

S, = ((6x)(0x)T) (6)
= ((Gdy)(Gdy)") (7)
= GS,GT (8)

Theoretically, the Gain matrix (Eq. 2) should use
the full error covariance matrix S, but, since, many
of the contributing error terms are not well-defined,
in practice it is more common just to use the random
noise component S.. For this special case of S, = S,
Eq. (8) simplifies to

(9)

The square roots of the diagonal elements of S:*d are
the (random) error bars reported with the retrieved
profiles.

s = (KTS;'K)

3 Systematic Errors

The estimated radiance yo (in Eq. 3) is calculated
using a forward model f

yo = f(x,b) (10)

which is a function of not only the retrieved state (x)
but also a set of additional parameters b (such as
assumed concentration of interfering species), which
are also subject to some uncertainty. Any forward
model parameter error §b° can be mapped into a cor-
responding measurement error

Sy’ = —ﬁébi

ob? (11)

e.g., simply by perturbing the parameter by Jb’ by
its estimated 1o uncertainty and re-running the for-
ward model. The minus sign arises is since we are
modelling the yo component of dy.



Since the measurement error vector dy’ originates
from a single scalar error b, it follows that all com-
ponents of §y® are fully correlated, i.e., a systematic
error.

Although we treat all systematic errors as associ-
ated with the simulated radiances yg, some errors,
such as uncertainty in radiometric gain, are more
accurately described as errors in the measurements
themselves, y. However, the difference is only in the
sign of 6b°.

Thus, provided the set of systematic errors ¢ are
independent, we can construct the total systematic
error covariance of the retrieval as the sum of co-
variances of the individual components (equivalent
to summing variances in the scalar case)

s, = (6y) (o))" (12)
S, = GS,G" (13)
SF° = (14)
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In practice, rather than create separate covariance
matrices for each systematic error, it is more conve-
nient to use just the error vectors dx*:

(5Xi) (5xi)T

Goy"’

S,

oxt =

(15)
(16)

where the magnitudes of the elements of §x’ provide
the value of systematic error 7 at each level of the
retrieved profile.

As an aside, although we treat random (noise) and
systematic errors differently, this is just a matter of
convenience. The random measurement noise could
also be represented as an additional set of m (sparse)
error vectors dy’ and propagated the same was as
systematic errors.

4 Optimal Estimation

For each MIPAS retrieval the total number of mea-
surements used, m ~ 1000s. To avoid the computa-
tion of m X m covariance matrices the error analy-
sis uses a sequential estimation approach where the
retrieval x is progressively updated using measure-
ments in smaller blocks of m ~ 100 corresponding to
a single microwindow at a single tangent height.

This is mathematically equivalent to considering
all the measurements simultaneously, although the
actual handling of systematic errors through the se-
quential updating becomes more complicated. How-
ever, one consequence of this approach is that an a
priori estimate is implicitly required in order that the
retrieval using just the first block of measurements is
adequately constrained.

This modifies the Gain matrix (Eq. 2):

G=(K'S/'"K+s;) ' K'S;! (17)
where S, is the a priori covariance matrix. It is as-
sumed S, is diagonal with elements corresponding to
(10 K)? for the temperature retrieval, (10 %)? for the
pressure retrieval, and (100 %)? for VMR (volume
mixing ratio, i.e., molecular concentration) trievals.

The a priori estimate is assumed to have only
a random error component, no systematic errors.
Where the retrieval is well-constrained by the mea-
surements (i.e., good S/N) the Gain matrix ap-
proaches the WLSF of Eq. (2). Elsewhere it limits
the random error to a maximum value given by S,
(so, 100% in the case of the VMR retrievals).

The actual MIPAS L2 retrievals use a mixture of
a priori and regularisation constraints, depending on
species, so the Gain matrix used in the error analysis
is only an approximation which becomes better the
smaller the random error compared to the a priori
erTor.

5 pT Sys Error Propagation

MIPAS retrievals are performed sequentially, starting
with the pressure-temperature (p7') retrieval, then
H,;0O, O3 etc, with the results of previous retrievals
also used in the modelling of yy. This means that
the same systematic error can contribute both di-
rectly and indirectly through errors in the previously
retrieved parameters.

For the error analysis, the only indirect propaga-
tion that is considered is through the pT retrieval.
The reasoning is that the pressure and temperature
are always required for retrieving VMR, but the mi-
crowindow selection aims to minimise spectral inter-
ference between different molecules.

If, for the VMR retrievals, we separate out the pT’
profile as a vector t (i.e., n pressure profile elements
plus n temperature profile elements), then we modify
Egs. (10) and (11):

yo = f(x,b,t(b)) (18)
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= oy — Jst (20)

where 5yi/ is the original calculation (Eq. 11), J is
the Jacobian of f (or y) with respect to t, and &t is
the error in the pT retrieval due to error source i.
For example, if there is some error which leads to
an underestimate of modelled radiance yo (so 5yi/
is positive), it is also likely to result in an overesti-
mate of temperature (so dt° is positive), and since J



(=0y/0t) is usually positive, the effect of pT error
propagation term is to offset some of the impact of
the error in dy*.

6 pT Rnd Error Propagation

The impact of the random (noise) component of the
pT retrieval also has to be considered for subsequent
retrievals. This is expressed as a covariance matrix
Sind of dimension 2n set by the pT retrieval vector,
i.e., twice the number of sweeps n.

Since the microwindows used for the pT' retrieval
are different from those used for the VMR retrievals,
we do not need to consider correlations within the
forward model.

Formally, the required transform is first to map
the pT error into the measurement space used by the
VMR retrieval SZT via the pT" Jacobian J, after which
it can be treated as any other independent error co-
variance component and mapped into a retrieval error
using the Gain matrix G

pT
Sy =

pT
SP =

JsmdgT
GSI''G”

The practical problem with this is that it requires an
explicit calculation of SgT which, like any covariance
in measurement space, can be large when ~1000s of
measurements are used.

Instead, we decompose Si"? into a set of 2n EOFs
(Empirical Orthogonal Functions) e

smd = ee” (23)
This then allows the pT random error to be propa-
gated as a set of 2n systematic error vectors which
can then be summed to obtain the VMR error vector
due to the propagation of the random noise compo-
nent of the pT retrieval error:

2n
oxPT = Z GJé’ (24)
j=1

7 Bias errors

So far it has been assumed that all forward model pa-
rameter errors b’ have unknown sign, essentially that
we use are best guess of the value of these parameters
so the error could be either positive or negative (i.e.,
unbiased)

However, there are two forward model errors which
represent the neglect of certain physical processes and
therefore the sign of the error is known: these are the
errors due to the neglect of non-LTE effects and CO4
line mixing (the error spectra are actually calculated

by running more complex radiative transfer calcula-
tions with these effects included).
In this case, strictly, the two error vectors should
be combined before a covariance is taken
5y2 _ 5ynte + 5ymix (25)
however since the line-mixing error is confined to just
a few Q-branches in the COs spectrum (the microwin-
dow selection process is ‘aware’ of these) the simpler
approach is chosen to regard each systematic error
source as independent.



