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2. MODULATION TRANSFER FUNCTION (MTF) ESTIMATION 

2.1 Definition and relationships between MTF, PSF, LSF and ESF 

The aim of this sub-section is to give some definitions about MTF, PSF and their 
relationships with the Line Spread Function (LSF) and the Edge Spread Function (ESF). 

By definition, the MTF is the modulus of the Fourier Transform of the Point Spread 
Function: 

( ) [ ]( )

( ) ( )x y

x y x y

2i f x f y

MTF f ,f FT PSF f ,f

PSF x,y e dxdy
− π +

=

= ∫∫
 (Eq. 1) 

The PSF corresponds to the impulse response of the optical imagery system that 
behaves, at least at a first order of approximation, like a low-pass linear filter; this linear 
filter is entirely described by its impulse response. 

The PSF includes different blur effects, such as optical (diffraction and aberrations), 
detector spatial and temporal integration and motion blur effects.  

In general case, the PSF is not symmetrical: its Fourier Transform, which corresponds to 
the Transfer Function of the imagery system, is therefore complex and not real. Its 
modulus, the MTF, is thus only partial information of the PSF that only focuses on Fourier 
spectral contrast. 

The Line Spread Function is defined for an given orientation θ and corresponds to the 
integration of the PSF over the orthogonal to the direction θ (see figure 1): 

[ ]( ) [ ]( )

( )

LSF u PSF u,v dv

PSF cos u sin v,sin u cos v dv

θ = θ

= θ − θ θ + θ

∫
∫

 (Eq. 2) 

Two particular cases of LSF are the horizontal and vertical direction LSF: 

 
[ ]( ) ( )

[ ]( ) ( )

LSF 0 u PSF u,v dv

LSF 2 u PSF v,u dv

=

π =

∫
∫

 (Eq. 3) 

These two particular directions are important because it corresponds to the two separable 
axes of the detector and the motion blur MTF.  
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θ

x : across-track

y : along-track

LSF[θ]

 

Figure 1: LSF defined as the directional 1D PSF. 

The modulus of the Fourier Transform of the [ ]LSF θ  corresponds to a cross-section of the 

MTF in the direction θ : 

[ ]( ) ( )

[ ] ( )

MTF f MTF f cos ,f sin

FT LSF f

θ = θ θ

 = θ 
 (Eq. 4) 

2.2 Review of MTF estimation methods 

2.2.1 General mathematical framework for MTF estima tion 

In the first part of this sub-section, a general mathematical framework based on Wiener 
filter is given. This approach is interesting because, in addition of the MTF estimation, it 
gives estimation the error of the MTF absolute estimation, without taking into account MTF 
/ PSF / LSF or ESF models: those models are meant to avoid or, at least, reduce, the 
impact of measurement noise and aliasing effects on the MTF absolute estimation. 

Without loss of generality, the above expressions are expressed in one dimension with an 
imagery system of sampling frequency normalized to one (GSD = 1). 

Let consider the vector mη  of size Nη as the image of the target o acquired by an imagery 

system with a PSF noted h and measurement noise n with an over-sampling factor with 
respect to the native sampling frequency. This over-sampling factor is noted η. 

( ) ( ) ( )

( )

k
m k h x o x dx n k k 0,N 1

k
h o n k

η η

   = − + ∈ −     η 
  = ∗ +  η 

∫
  (Eq. 5) 

The noise n is assumed to be an independent white Gaussian noise of standard deviation

nσ . 

The Transfer Function of the imagery system, defined as the Fourier Transform of its PSF 
h is noted H. Its modulus |H| corresponds to the MTF.  
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It will be assumed hereinafter that all stochastic processes inducing stochastic variability of 
the PSF and of the noise are stationary and real. 

In the framework of the Wiener filter (cf. [RD30]), we wish to estimate the PSF h – or, in a 
dual manner, the MTF |H| – with the best mean-square error linear combination of data 
from the image m, knowing the target o.  

In other words, the PSF (or LSF) estimation from an image of the known target can be 
seen as a deconvolution problem. The optimal deconvolution kernel in term of the mean 
square error is given by the Wiener filter. 

The optimal Wiener Filter is defined in the Fourier interval ,
2 2

 η η −
  

 by: 

( )
( )� ( )

( ) � ( ) ( ) � ( )

( )

*

A

*

H

2 2
2

H n H

k

S f

S f O f
G f

S f O f S f k O f k
η

∈

=
+σ + − η − η∑

ℤ�������������������������

 
(Eq. 6)

 

where: 

• ( ) ( )
2

HS f E H f =   
 is the expected value of the square MTF; 

• �O  is the Fourier Transform of the target o; 

• SA(f) is the Power Spectral Density the aliasing effects, if any, taking into account 
possible over-sampling factor η .  

The Power Spectral Density the aliasing effects is defined by the Poisson’s formula: 

( ) ( )� ( )
*

A H

k

S f S f k O f k
∈

= −η −η∑
ℤ

 (Eq. 7) 

From this previous expression, one can demonstrate that the mean square error of the 
MTF estimation is given by: 

( )
( ) ( )( )

( ) � ( ) ( )

2
H n A

MTF 2
2

H n A

S f S f
MSE f N

S f O f S f
η

σ +
=

+σ +
 (Eq. 8) 

There is no aliasing effect if the over-sampling is high enough to respect the sufficient 
condition of the Shannon theorem.  

Considering the cut-off frequency – inherent for optical imagery systems – in the spatial 
frequency domain of the focal plane: 

c
min

1
F

N
=

λ
 (Eq. 9) 

Where: 

• minλ  is the shortest wavelength for the considered spectral channel; 
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• N is the F-Number of the optical system defined as the ratio of the aperture’s 
diameter with the focal length. 

The Shannon sampling condition (cf. [RD30]) implies that: 

c2F
η

≥
δ

 (Eq. 10) 

Therefore, the oversampling factor should verify: 

min min min sat

1 D D
2 2 2GSD

N F H
η ≥ δ = δ =

λ λ λ
 (Eq. 11) 

Under this Shannon’s condition of over-sampling, the optimal mean square error of the 
MTF estimation is therefore: 

( )
( )

( ) � ( )

2
H n

MTF 2
2

H n

S f
MSE f N

S f O f
η

σ
=

+σ
 (Eq. 12) 

The relative root mean square error, noted rMSEMTF, is then defined by: 

( ) ( ) � ( )
1 22

2
MTF n H nrRMSE f N S f O f

−

η

 = σ +σ   
 (Eq. 13) 

Those expressions of the mean square error (Eq. 8) and (Eq. 12), respectively with or 
without aliasing effects are important because it gives very general information of the “raw” 
direct – i.e. without a priori model – MTF estimation, before the use of optimization with 
MTF models.  

In particular, the estimation of the mean square error of the MTF estimator could be useful 
to determine the frequency range where MTF model should be optimized. 

2.2.2 Target based absolute MTF estimation methods 

Most of the absolute MTF in-orbit measurement methods are based on image analysis 
from acquisition(s) of specific well known targets. Those targets can be either: 

• dedicated targets such as “on-purpose” painted surfaces, tarps, single or multiple 
spotlights, convex mirror array, etc.; 

• artificial objects such as bridges, buildings, runway painted lines, etc.; 

• or even natural objects such as fields, stars, etc. 

Let consider now the two main targets used for MTF estimation: 

• The pulse target; 

• The edge target. 

Other targets such as impulse targets, three-bar patterns or Siemens star patterns 
presented in the WP210 can be “simply” derived from the pulse target.  
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Without loss of generality, the GSD of the imagery system will be considered to be equal 
to one. In other words, the different dimensions related to the MTF targets will be in fact 
expressed as multiples of GSD.  

2.2.3 The pulse target 

As already presented in the WP210, and illustrated by the figure 2, a pulse target consists 
of a bright region surrounded by dark regions.  

The main key parameters of the pulse target are: 

• the differential radiance ∆L between the dark and bright parts of the target; 

• the width of the pulse, noted W; 

• the orientation angle α with respect to the direction of the MTF profile; 

• the height LH of the target in the orthogonal direction of the MTF profile. 

�

LT

LT

LTLT

LW

LH

W

Surrounding background

Direction of the MTF profile

 

Figure 2: Pulse target for MTF estimation. 

The image m of this target is therefore a set of LH sampled LSFs in the direction of the 
MTF profile convoluted by the pulse of width W. Those convoluted LSFs are noted 
hereinafter WLSF ∗π : each line mn of the image of the pulse target can be written as: 

 ( ) ( )( ) ( )n W 0m k LSF k x n / tan n k= ∗π + + α +  (Eq. 14) 

The orientation angle α conditions the maximum over-sampling factor of the WLSF ∗π
along the direction of the MTF profile (cf. figure 3) : 

 ( ) ( )max tanη ≤ η α = α  (Eq. 15) 
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Figure 3: Maximum over-sampling factor depending on  the orientation 
angle with respect to the MTF profile. 

There is an important trade-off between the effective chosen over-sampling factor η  and 

the noise regularisation to improve the SNR budget of the reconstructed over-sampled 
profile.  

Indeed, choosing an over-sampling factor η  less than the maximum one enables to 

“stack” different WLSF ∗π noisy profiles for a same sampling phase.  

In the mean, each sub-sampling of the resulting reconstructed over-sampled WLSF ∗π

profile is the results of the binning of HL η   real samplings from original noisy WLSF ∗π

profiles1. In other words, this binning improves the SNR budget: the resulting standard 
deviation of the noise of the stacked and over-sampled WLSF ∗π profile, noted ησ  verifies: 

  n H n
H

L
Lη

η σ = σ η ≈ σ   (Eq. 16) 

A good compromise is to set the over-sampling factor to the smallest value (with an 
optional margin) enabled by the sampling condition of Shannon (Eq. 11), in order to 
maximize the noise reduction by stacking the LH noisy profiles. Of course, this can be 
done provided that this “optimal” over-sampling factor is less than the maximum over-
sampling factor conditioned by the orientation angle α of the target: 

 ( ) ( )opt
min

2
min tan , 1 Margin

N

 δ  η = α +   λ 
 (Eq. 17) 

                                                      

1     stands for the floor rounding operator. 
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To those main key parameters, one should also consider:  

• the length of the pulse target LW (in the direction of the MTF profile): this length 
should be larger than the spatial extension of the PSF, defined in the WP210, as 
the twice the PSF extend radius. This minimum length is defined in order to 
prevent the LSF from being truncated. In this study, we propose to define this PSF 
extend radius as the 95 % energy encircled radius in pixels; 

• the length LT of the dark area surrounding the “core” target to prevent the 
surrounding background from “contaminating” the image of the pulse target. This 
length should be greater than the PSF extend radius. 

Once the WLSF ∗π profile has been computed by stacking and interleaving the different 

sampling phases, we have at “our disposal” a 1D WLSF ∗π profile over-sampled by the 

factor η  with a reduced Gaussian noise nη  of standard deviation ησ : 

 ( ) ( ) ( )W 0m k LSF x k / n kη η= ∗π + η +  (Eq. 18) 

Therefore, the estimation of the LSF from the reconstructed over-sampled WLSF ∗π profile 
can be made with the “signal” deconvolution approach developed in the sub-section 
§2.2.1. The regularization with a MTF / PSF / LSF or even ESF model can be done after 
the signal processing stage. 

The modulus of Fourier Transform of the over-sampled “known object“ Wπ , noted �WΠ  

verifies, in the Fourier interval ,
2 2

 η η −
  

: 

 � ( )
( )
( )

( )w
sin Wf

f L L W sinc Wf
sin f

π
Π = ∆ ≈ ∆ η

π η
 (Eq. 19) 

Then, applying the equation (Eq. 12), the mean square error of the MTF estimator is, then: 

 ( )
( )

( ) ( )

2

MTF 2
2 22

n w

E H f
MSE f

L
E H f W sinc Wf 1

L

 
  =

    ∆ η     +         σ   

 (Eq. 20) 

One can note that, on account of the sinc, if the size in pixel W of the pulse target is close 
to an even number, sinc(Wf) is close to zero in the neighbourhood of the Nyquist 
frequency. The mean square error of the MTF estimator is then close to the expected 
value of the square of the MTF. It means that, in the case of pulse target’s width close to 
even multiple of the GSD, the relative root mean square error of the MTF estimator, 
rRMSEMTF(0.5) at the Nyquist frequency is equal to 100 % ! 

As an illustration, we have simulated the case of MTF estimation with six pulse targets of 
different widths (0.2, 0.5, 1, 2, 3 and 5 GSD) with two different ratios L η∆ σ (50 and 200).  

The figure 4 gives the corresponding relative root mean square error of the MTF estimator 
in log-scale for different normalized spatial frequencies up to the Nyquist frequency (red: 

( )LSFL 50∆ σ η = , blue: ( )LSFL 200∆ σ η = ). 
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Figure 4: Relative root mean square error of the MT F estimator rRMSE MTF 
for different widths of pulse target and for two ra tios ( )LSFL∆ σ η  
(red: 50, blue: 200). 

This example shows that the accuracy of the MTF estimation for a particular spatial 
frequency strongly depends on the width of the pulse target.  

More precisely, on account of zero-crossing of the Fourier transform of the pulse, the 
relative root mean square error of the MTF estimator is close to 100 % for frequencies in 
the neighbourhood of multiples of the inverse of the pulse’s width: 

 
k

,k
W

   ∈    
ℕ   (Eq. 21) 

Inversely, the Fourier transform of the pulse has local maxima for odd multiple of the 
inverse of twice the pulse’s width. The neighbourhood of those frequencies are therefore 
the most suitable frequencies for the MTF estimation. 

 
2k 1

,k
2W

 +  ∈    
ℕ   (Eq. 22) 
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2.2.4  The edge target 

LW

LTLT

LT

LT

LH

Surrounding background

Direction of the MTF profile

 

Figure 5: Edge target for MTF estimation. 

An edge target corresponds to a high contrast Heaviside edge (cf. figure 5). The main key 
parameters of the pulse target are: 

• the differential radiance ∆L between the dark and bright part of the target; 

• the width of the target in the direction of the MTF profile, noted LW; 

• the orientation angle α with respect to the direction of the MTF profile; 

• the height LH of the target in the orthogonal direction of the MTF profile. 

The tradeoff between the orientation angle and the height of the target is exactly the same 
as the one for the pulse target presented in the previous sub-section 2.2.3. 

The image m of an edge target is therefore a set of LH sampled LSFs, in the direction of 
the MTF profile, convoluted by the Heaviside function u.  

Those convoluted LSF is called hereinafter ESF for Edge Spread Function. Each line of 
the image of the pulse target are therefore noisy sampled ESF and can be written as: 

 

( ) ( )( ) ( )

( )( ) ( )
n 0

0

m k ESF k x n / tan n k

LSF u k x n / tan n k

= + + α +

= ∗ + + α +
 (Eq. 23) 

Again, the estimation of the LSF from the reconstructed over-sampled ESF profile can be 
made with the “signal” deconvolution approach developed in the sub-section §2.2.1: 

 
( ) ( ) ( )

( ) ( )
0

0

m k ESF x k / n k

LSF u x k / n k

η η

η

= + η +

= ∗ + η +
 (Eq. 24) 

Where nη  is an independent Gaussian noise whose standard deviation is noted ησ . 
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The modulus of the Fourier Transform of the Heaviside function truncated (of width LW) 
and over-sampled by a factor η is: 

 � ( )
( )

( )
Wsin L f 2

U f L
sin f

π
= ∆

η
 (Eq. 25) 

For spatial frequencies that are close to odd multiples of the inverse of the edge’s width 
LW, this modulus of the Fourier Transform can be approximated by: 

 � ( )
W

2k 1 L
f , k , U f

L f
+ ∆ η

≈ ∈ ≈
π

ℕ  (Eq. 26) 

Inversely, the function � ( )U f  has zero-crossings for even multiples of 1/ LW and: 

 � ( )
W

2k
f , k , U f 0

L
≈ ∈ ≈ℕ  (Eq. 27) 

As the edge’s width LW is supposed to be large with respect to the PSF’s extend, the 
alternation between 0 and L f∆ η  has a small period (1/LW).  

The figure 6 is an example of the Fourier transform of a 16 GSD large edge target, 
over-sampled by a factor 4. 

 

Figure 6: Modulus of the Fourier Transform of the s ampled and truncated 
(LW = 16 GSD) and over-sampled ( η=4) Heaviside function. 

Therefore, for suitable frequencies, i.e. in the neighbourhood of odd multiples of 1/LW, the 
relative root mean square error of the MTF estimation is: 
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( )

W
MTF

2
W 2 2

W

L2k 1
rRMSE f

L L
E H f L

f

η

η

  σ η+  ≈ =       ∆ η  + ησ  π    (Eq. 28) 

It is interesting to note that this optimal relative root mean square error of the MTF 
estimation is obtained by the Wiener filter derived from the equation (Eq. 6), without the 
aliasing term of error. 

In literature (e.g. [RD13], [RD15], [RD14]), the standard approach to estimate the LSF 
from the ESF reconstructed is the convolution with the first order derivative filter 1h∂ : 

 
� ( ) ( )

1

1
f 0

1 1
h 0

2 L 2 L

i f
H f sin 2 f i

2 L L

∂

∂

 
 = −
 ∆ ∆ 

π
= π η ≈

∆ ∆ η∼

 (Eq. 29) 

As shown by the previous equation, this derivative filter approximates, for small values of 
spatial frequency, the inverse of the Fourier Transform of the Heaviside function.  

Nevertheless, this filter does not take into account neither the zero-crossings nor the 
radiometric noise nη . 

The figure 7 represents an example of a Wiener filter compared to the first order derivative 
filter and to the “strict” inverse filter. The Wiener filter takes into account: 

• the zero-crossings for even multiples of 1/LW: for those frequencies, the Wiener 
filter is null; 

• the standard deviation of the noise: considering this standard deviation with 
respect to the radiance differential L∆ , the Wiener filter “stops” the deconvolution 
after the normalized spatial frequency 0.6 and completely damps the signal 
beyond the normalized spatial frequency 1. Of course, this is an example: the 
deconvolution and damping bandwidth of the Wiener filter strongly depends on the 
SNR of the profile. 
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Figure 7: Examples of transfer functions (modulus) of the first order 
derivative filter (green line) and the Wiener filte r (blue line). 
Those transfer functions are compared to the invers e filter of 
the Heaviside function u (red line). 

The resulting relative root mean square errors for those three approaches for the 
deconvolution of the ESF profile are given in the figure 8. Only odd multiples of 1/LW 
frequencies have been considered here. The Wiener approach is obviously the optimal 
approach and the first order derivative gives the worst results. 

 

Figure 8: Examples of relative root mean square err ors (in %, in log-
scale) for the three different deconvolution kernel s (Wiener, 
first order derivative and inverse kernels) present ed in the 
figure 7. 
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For the same characteristics of the radiometric noise and target’s size LW, a performance 
comparison has been made between the edge target and three pulse targets of widths 
½ GSD, GSD and 3 GSD (cf. figure 9). 

The resulting performances for those four targets are presented in the figure 10. Those 
performances are formulated in terms of theoretical relative root mean square error of the 
four different MTF estimations. 

 

Figure 9: (a) Edge target. (b) Pulse target (W = 1/ 2 GSD). (c) Pulse target 
(W = GSD). (d) Pulse target (W = 3 GSD). 

(a) (b)

(c) (d)
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Figure 10: Resulting relative root mean square erro r rRMSEMTF(f) for the 
four targets presented in the figure 9. 

2.2.5 Bi-resolution MTF estimation methods 

The bi-resolution MTF estimation method makes use of spectrum ratios in the Fourier 
domain of two images of the same scene in order to estimate the ratio of their respective 
MTF. Of course, this approach requires specific pre-processing such as geometric 
registration and radiometric alignment. Change detection algorithm could be also used to 
determine areas that are temporally stable between the two image acquisitions.  

This approach can be used for two different cases. In the first case, the two MTF of the 
two images are unknown and their respective GSD are comparable. In this case, of 
course, only relative MTF estimation can be done. As noticed by Léger et al. [RD23], this 
method has been used for SPOT systems to estimate temporal evolution of the MTF due 
to, for example, defocus degradation or spatial MTF variation in the field of view of the 
instrument. 

In the second case, one of the two images has a higher resolution, typically, at least a 
factor 5 between the GSDs. In this case, even if the MTF of the high resolution (HR) image 
is unknown, it is assumed to be equal to one, at the scale of the low resolution image (LR). 
In other words, this approach enables an absolute MTF estimation of the LR image.  

This method has been used for the SPOT 4 commissioning phase presented by Kubik et 
al. [RD18] to assess the VEGETATION’s MTF with the HRG image. 

To apply this method, a direct approach consists in first estimating the Power Spectrum 
Density (PSD) of the two co-registred images. Those PSD estimations can be achieved by 
the Welch method (cf. [RD30]). The square root of the ratio of the two PSD is then an 
estimation of the ratio of the two MTFs. 

As noticed by Kubik et al. [RD18] and confirmed by Léger et al. [RD23], this “direct” 
application of the bi-resolution method suffered from an over-estimation of the MTF due to 
aliasing effects. 
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To compensate for this aliasing effects inducing over-estimation of the MTF near the 
Nyquist frequency, Viallefont-Robinet, in [RD41], proposed a bi-resolution method taking 
into account PSD estimation of the aliasing component in LR image for the MTF 
estimation, in order to avoid its over-estimation. 

2.2.6 “Blind” absolute MTF estimation methods with specific on-board 
devices 

There exist some specific devices meant to estimate the MTF without having requirement 
about the knowledge of the observed scene or object: in this case, those approaches are 
called “blind” method. 

An example of those “blind” approaches requiring specific on-board devices is the phase 
diversity method. Precisely described by Paxman et al. [RD31], this image processing 
technique infers the global MTF from a set of more than two concomitant image 
acquisitions of the same extended object or “rich” natural scenes (e.g. urban areas).  

The first matrix image acquisition corresponds to a “standard” focal-plane acquisition. 
Therefore, this acquisition takes into account the unknown MTF / PSF.  

The other acquisitions are made with additional known perturbations of the MTF. A simple 
way to do this is to translate the other detector matrixes in the focal plane to induce 
different known defocuses for the secondary image acquisitions. 

Practically, the image processing corresponds to a joint and iterative estimation of: 

• the unknown scene, via a deconvolution processing taking into account of the 
previous MTF estimation ; 

• the MTF, via a Zernike model as described in the sub-section §2.3.1 (Eq. 36) and 
(Eq. 37), taking into account the current estimation of the unknown object. 

Those two conjoint estimations are iterated until convergence. 

2.3 Direct and indirect parametric models of the MT F 

Different models of MTF exist in the bibliography. Those models can be direct 2D MTF 
models, or indirectly, through LSF or ESF parametric 1D models. The aim of this sub-
section is to synthesize those different parametric models. 

Those parametric models can be fitted on the “raw” MTF / PSF / LSF or ESF estimated by 
the signal processing approach. There exists many optimization approaches to determine 
those parametric models. The most widely used methods are: 

• The downhill simplex method: this multidimensional optimization method does not 
use the gradient of the cost function that have to be optimized: it is therefore 
useful for non smooth (noisy) or discontinuous cost functions;  

• Levenberg-Marquardt method: this multidimensional optimization method is a 
gradient and hessian based method. The gradient and the hessian of the cost-
function should be given or numerically estimated. 

See [RD33] for details for both optimization algorithms. 
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2.3.1 Parametric 2D MTF models 

Blanc and Delvit et al. in [RD7] and [RD8] have proposed a simplified 2-parameter 2D 
MTF models: 

( ) ( ) ( ) ( ) ( )22 2

x y x x x x x y

B C
A

MTF f ,f exp f f sinc f sinc f
��������� ����������������������������������

 = − λ + λ   
 (Eq. 30) 

where: 

• ( ) ( ) ( )sinc x sin x x
∆

= π π  

•  fx and fy are spatial frequencies normalized by the sampling frequency, 
respectively across-track and along-track. 

The expression A stands for an approximation of the optical MTF including the diffraction 
phenomena and different optical errors sources such as aberrations, decentring or 
focusing. 

The expression B is an approximation of the detector MTF defined as the MTF 
degradation due to the spatial integrator effect across-track of the detector. 

The expression C is an approximation of the detector MTF along-track – sinc(fy) – 
combined with the smearing along-track effects due to detector displacement during the 
integration time. 

Léger et al. [RD22] proposes a complementary model in order to take into account more 

precisely a possible defocus ∆focus of the optical system: 

( )( ) ( )( )( )defoc x y 1c x yMTF f ,f 2J X f ,fρ = ρ  (Eq. 31) 

where: 

• ( ) 2 2
x x yyf ,f f fρ = +  

• ( ) ( ) ( )1c 1J x J x x= π π  and ( ) ( )1
0

co
1

s xsinJ x d
π

τ− τ τ=
π∫ is the first order J-Bessel 

function; 

• ( ) N
X ,f f 1 f

N

 ∆ λ ∆ = −   δ δ
; 

• λ is the central wavelength; 

• δ is the detector size (in the focal plane); 

• N is the F-number. 

As far as the detector MTF is concerned, a more accurate standard model is a 1 
parameter trapezoid detector model: 
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( ) ( ) ( )det detMTF f sinc f sinc f= α  (Eq. 32) 

To take into account a possible multi-phase Time Delay Integration sub-system (e.g. 
PLEIADES system) or an integration time less than the line sampling time, the smearing 
along-track MTF model can be a 1 parameter model: 

( ) ( )sm y sm yMTF f sinc f= α  (Eq. 33) 

Moreover, especially for High Resolution System (metric and sub-metric) with a “large” 
Time Delay Integration sub-system, an additional MTF degradation has to be considered.  

This specific MTF degradation is related to the motion blur due to line of sight temporal 
perturbations during the integration time. Precise model of motion blur, sometimes called 
desynchronization MTF for High Resolution TDI imagery system such as PLEIADES-HR, 
can be very complex, depending on the high or low frequency nature of the perturbations 
with respect to the integration time (cf. [RD37]).  

The equation below corresponds to a simple model, based upon a low frequency 
perturbation assumption: 

( ) ( )mb mbMTF f sinc f= α  (Eq. 34) 

The combination of those models, leading to a 7-parameter model, can improve the 
accuracy and the relevancy of the MTF model: 

( ) ( ) ( ) ( )( )
( ) ( ) [ ]

( ) ( ) [ ]

( ) [ ]

( ) ( ) [ ]

2 2

x x x x defoc x y opt

x det x det

y det y det

sm y sm

mbx x mby y mb

MTF f exp f f MTF f ,f MTF

sinc f sinc f MTF

sinc f sinc f MTF

sinc f MTF

sinc f sinc f MTF

   = − λ + λ ρ      

α

α

α

α α

 (Eq. 35) 

It is important to note that the instrument is partially known thanks to the detailed optical 
design and the on-ground calibration of sub-systems such as detectors unit and are not 
prone to change in-orbit.  

In other words, some of those parameters has not to be estimated during the in-orbit MTF 
assessment. Usually, the detector and the smearing along-track MTF degradation are 
stable and well known. Therefore, their corresponding model parameters have not to be 
estimated during the in-orbit optimization of the MTF model. 

The previous optical MTF model, even with its improvement based on a defocus MTF 
model, is very simple. Mugnier and Le Besnerais [RD27] have proposed, for the optical 
MTF, a « physical » multi-parameter model based on a Zernike orthonormal 
decomposition of the wave-front error (WFE) that corresponds to the optical aberration in 
the entrance annular pupil of the instrument: 

( ) ( )
0

N

l l l
l 1

WFE p Z p+
=

= γ∑  (Eq. 36) 

where: 

• p corresponds to the spatial location in the pupil entrance. 
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In [RD27], Mugnier and Le Besnerais have limited the Zernike decomposition to 8 
parameters from Z4 (defocus) to Z11 (spherical decomposition). 

The optical PSF is then numerically computed as the squared modulus of the Fourier 
transform of the complex pupil: 

( ) ( ) ( )x y

2
2i

WFE p ,p

opt x y

x y
PSF x,y FT P p ,p e ,

F F

π
−

λ
    = − −     λ λ 

 (Eq. 37) 

where: 

• x, y corresponds to the spatial location in the focal plane; 

• P is the pupil support generally circular or even annular, in the case of central 
obscuration of the telescope; 

• λ is the central wavelength; 

• δ is the detector size (in the focal plane); 

• F is the focal of the instrument. 

An intermediate and simpler mean to “physically” model the optical MTF is to combine a 
perfect diffraction limited optical MTF with a Gaussian global model of optical aberration 
MTF: 

( ) ( )

( )
2

2

diff opt x y x y x x y y x y

f
K

F
aber opt x y

MTF f ,f P p ,p P p f ,p f dp dp
F F

MTF f ,f e

−

 λ  −    δ
−

 λ λ = − −   δ δ

=

∫∫
 (Eq. 38) 

The figure 11 represents cross-sections of the (isotropic) diffraction limited optical MTF 

with different ratio ε of the central obstruction with respect to the pupil diameter. 
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Figure 11:  Cross-section of the diffraction limite d optical MTF for different 
ratios ε of central obscuration. Frequencies are normalized  by 
the cut-off frequency 1/(N λ). 

The two physical previous models have the advantage to be easily “transposed” from a 
spectral band to another one, by taking into account their respective central wavelengths.  

Spectral sensitivity ( )S λ  could be used in those physical models, instead of the central 

wavelength λ: 

( )
( ) ( )

( )

( )
( )

( )

2
2

x y x x y y x y
S
diff opt x y

f
K

F

aber opt x y

S P p ,p P p f ,p f dp dp d
F F

MTF f ,f
S d

S e d
MTF f ,f

S d

−

 λ  −    δ

−

 λ λ λ − − λ  δ δ
=

λ λ

λ λ
=

λ λ

∫∫∫
∫

∫
∫

 (Eq. 39) 

2.3.2 Parametric 1D LSF or ESF models 

To avoid noise and aliasing “contamination” on the MTF cross-section estimation from a 
edge target, different models of ESF are used in the bibliography. 

Thomas [RD38] proposes a sigmoid 3-parameter model: 

( ) x
0 1 2

1
ESF x

a a a
=

+
 (Eq. 40) 

Leloglu and Tunali [RD24] have proposed first a “simple” 3-parameter model based on the 
error function erf.  
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( ) ( )0 1 2ESF x a a erf a x= +  (Eq. 41) 

This model, also mentioned by Helder et al. [RD14], corresponds in fact to a gaussian 
model for the PSF, and, therefore, for the MTF. 

This model is judged in both papers too “simple” to be able to follow high frequency effects 
of the ESF, like ringing or ripples near. This can be explained by the fact that the PSF with 
its potential skewness and secondary lobes is definitively not gaussian.  

To circumvent this limitation, Leloglu and Tunali [RD24] have proposed a 6-parameter 
model as a combination with the erf based previous model and a fifth order odd polynomial 
apodized with a hamming window w: 

( ) ( ) ( )
3

2k 1
0 1 2 l

k 1

ESF x a a erf a x w x c x −

=

= + + ∑  (Eq. 42) 

Helder et al. [RD14] have mentioned an other 10-parameter ESF model based upon Fermi 
functions, of the form: 

( )
13

k
k

kk 1

x b
ESF x d a exp 1

c

−

=

  −   = + +       
∑  (Eq. 43) 

In addition to their “intrinsic” model parameters, the different ESF models should have two 
additional parameters: the phase shift of the ESF with respect to the sampling grid for the 
ESF measured in the edge target image.  
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3. SIGNAL TO NOISE RATIO (SNR)  

3.1 Definition of the SNR 

The signal to noise ratio (SNR) is one of the elements of the image quality. It characterizes 
the radiometric noise. The image noise quantifies the variation of the radiances at a given 
radiance level for a uniform landscape. It is defined as: 

SNR = m / σ (Eq. 44) 

where m is the mean of a series of radiances for this uniform landscape and σ is the 
standard deviation of this series. 

If the imaging system is such that a line of the image is acquired by a CCD array, then the 
noise in the image is a combination of two separate noises (Kubik et al. 1998 [RD18]; 
Porez, Sylvander 2007 [RD32]): 

• column-wise noise, also called instrumental noise: caused by Poisson fluctuation 
of the signal delivered by the detector and various constant electronic onboard 
chain noises, 

• and line-wise noise, also called normalization noise; following image 
normalization, the residuals may cause visible ‘columns’ on a uniform landscape. 

In this case, each noise must be assessed separately. They are then “quadratically” 
summed to yield a single value. 

If the imaging CCD array is a matrix (e.g., the PolDER system), then each CCD has its 
own noise. As there are several normalization steps to equalize the CCDs signal, the 
noise is assumed in the same way than for the line-wise noise. 

The SNR is a function of the mean radiance of the landscape. The SNR is usually lower 
for low values of radiance (dark landscape) because the relative influence of the noise is 
larger. For large radiances, the SNR increases as the relative influence of the noise 
decreases. Accordingly, the SNR should be known at different radiance levels. 

In some cases, a model can be established that relates the noise to the absolute 
calibration coefficient, onboard image amplification gain, and radiance. In this way, once 
the SNR is known for a reference radiance and neutral gain whose value is 1, it can be 
assessed for any radiance and gain. In the case of a CCD array, the model applies to the 
column-wise noise (Lebègue et al. 2003 [RD20]). 

If there is an on-board calibration device, e.g., a calibration lamp, the SNR is estimated by 
collecting a series of observations of this lamp. This can be done during the planned 
calibration sequences. The emission of the lamp is assumed to be constant during the 
period of collection. From this series, the mean and standard-deviation are computed and 
the SNR is assessed. In case of CCD arrays, this technique can only apply to column-wise 
noise, i.e., the time-series must be collected by the same CCD (Kubik et al. 1998 [RD18]). 
For line-wise noise, vicarious techniques should be adopted. 

3.1.1 Absolute calibration for SNR estimation 

The SNR is a ratio and its value depends whether it is expressed in radiances or digital 
counts. The SNR depends upon the quality of the absolute calibration of the instrument 
and in the case of CCDs array(s) of the inter-CCD and inter-array calibration. The 
conversion of a digital count DC into radiance L is in the form: 
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L = α DC + β (Eq. 45) 

where α is a gain and β an offset. Because β is not zero, the SNR is not equal in digital 
counts or in radiances. The SNR should be expressed in radiances and it cannot be 
generally computed with digital counts. The smaller β, the smaller the difference between 
the two SNRs. 

3.1.2 Effects of the atmospheric extinction of radi ance on SNR estimation 

The radiance measured at system level depends on the optical properties of the 
atmosphere in both downwards and upwards directions. At first order, and under clear 
skies, one may write 

Lsat = τ Lground + Latm (Eq. 46) 

where Lsat is the observed radiance, Lground is the radiance coming from the ground, τ is the 
transmittance of the atmosphere and Latm is the radiance due to scattering by the 
atmospheric constituents. 

It is usually assumed that the terms τ and Latm exhibit no high frequencies. Accordingly, 
the standard-deviation of Lsat is equal to 

σ[Lsat] = τ σ[Lground] (Eq. 47) 

Hereinafter, the operators [ ]σ  and [ ]m  denotes respectively the standard deviation and 

the mean of the operand. 

From these equations, one conclude that 

• the SNR differs whether it is computed in radiances with or without atmospheric 
correction. The lower Latm, the smaller the difference. 

• the assessment of SNR should take into account the optical effects of the 
constituents in the atmosphere. 

The following is a rough calculation of the error δ that is committed on the SNR if 
computed without correction. Let denote SNRsat the SNR assessed from the satellite 
radiances without correction. Let SNRactual be the actual SNR. Assuming (Eq. 47), one 
obtains a relationship between, the SNR assessed from the satellite and the actual SNR: 

ground sat

sat

ground sat

ground sat

ground

actual

m L Lm
SNR

L L

m L L

L

SNR

 τ +  = =
 σ σ τ +  

 τ +  ≈
 τσ   

= +δ

 (Eq. 48) 

where δ is equal to  

[ ]atm

ground

m L

L
δ =

 τσ   
  (Eq. 49) 

Assume a typical value of 150 for SNRactual and a value of 0.7 for τ. Assume that Latm is 
about 0.05 times m. Then, typically 
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11δ≈  (Eq. 50) 

This rough calculation indicates the level of uncertainty that can be expected if one does 
not correct for atmospheric effect. 

This uncertainty may also be considered close to that would be observed if the 
atmospheric terms Latm and τ contain high frequencies. In [RD29], Panchev (1971) 
suggested to use the structure function to assess the intensity of the small-scale 
structures.  

Practically, it could be applied on images acquired over sites suitable for Rayleigh 
calibration. During this operation, spatial homogeneity is assumed. Computing the 
structure function will permit to assess the heterogeneity of these atmospheric terms, 
though the contributions of the ocean surface may play a role. 

3.2 Earth-viewing approach for SNR assessment 

Only a very limited number of imaging systems has an on-board calibration device fully 
appropriate to the assessment of the SNR. Most often, vicarious techniques should be 
employed. These techniques are based on the earth-viewing approach. In this approach, 
an image acquired by the system, or combination of images, is used to compute the SNR. 
The radiance emitted by this landscape has certain properties, e.g., spatial homogeneity, 
whose knowledge permits to assess the SNR. 

Before discussing the methods to assess the SNR in the earth-viewing approach, we 
should study the role played by the image quality in the assessment of the SNR. As Earth-
viewing techniques deal with images, there is a link between SNR, MTF and PSF. The 
following section shows that a minimum surface exists for an accurate assessment of the 
SNR. 

3.3 Relationships between SNR, MTF and PSF – Minimu m surface 

Image quality is the result of a complex relationship between ground sampling distance 
(GSD), modulation transfer function (MTF) and SNR. The combination of these estimates 
enables to indicate the quality and the amount of information that can be extracted from 
imagery. Leachtenauer et al. (1997) [RD19] define the general imagery quality equation 
(GIQE) where the interpretability of an image, expressed as the NIIRS (national imagery 
interpretability rating scale), is given by 

NIIRS = 10.251 – a log10 GSDGM + b log10 RERGM – 0.656 HGM – 0.344 G/SNR (Eq. 51) 

where: 

• GSDGM is the geometric mean of the ground sampled distance, 

• RERGM is the geometric mean of the relative edge response, 

• HGM is the geometric mean-height overshoot caused by the MTFC (MTF 
compensation),  

• G is the noise gain associated with MTFC, 

• in the current form of the GIQE, SNR is estimated for differential radiance levels 
from Lambertian scenes with reflectances of 7% and 15% with the noise 
estimated from photon, detector, and uniformity noise terms, 
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• if the RER exceeds 0.9, then a equals 3.32 and b equals 1.559; otherwise, a 
equals 3.16 and b equals 2.817. 

The assessment of the MTF has been recognized as depending on the SNR (Delvit et al. 
2003 [RD8]; Leloglu, Tunali 2006 [RD24]; Helder 2003 [RD13]). The MTF assessments 
are getting noisier as the SNR decreases.  

In [RD4], Choi (2003) indicates that the SNR should be above 50 for accurate results with edge 
target methods. Helder and Choi (2005) [RD15] underline that significant tradeoff exists 
between MTF and SNR. 

3.3.1 Minimum surface for SNR estimation 

Reciprocally, it may be shown that the accurate assessment of the SNR is related to the 
PSF. SNR assessment requires accurate assessments of the standard deviation of the 
noise. Statistically, for typical remote sensing systems, the assessment of the standard 
deviation on an homogeneous surface needs a larger number of independent measures 
than the mean radiance assessment.  

In other words, the minimum surface of homogeneous regions required for SNR 
assessment is typically larger than the one required for the mean radiance assessment. In 
the following, we establish a relation between the accuracy of the SNR assessment and 
the PSF. 

The SNR assessment on a homogeneous surface can be viewed as the joint estimation of 
the mean m  and the variance 2v σ=  of a random Gaussian white noise n. Let us call em

, 2
e ev σ=  and eSNR  respectively the estimation of m , 2v σ=  and SNR m v m σ= = . 

The aim of this section is to determine the minimum number N of independent measures 
of the random gaussian white noise n to obtain a good accuracy of the SNR assessment. 
In the remote imagery domain, this minimum number N is related to a minimum 
homogenous surface of N GSD2. 

Let consider { } [ ]1,k k Nn ∈  N independent measures of a random Gaussian white noise n 

whose mean m and variance 2v σ=  are both unknown. The unbiased optimal estimators 
me and ve are, in this case: 

1

1 N

e k
k

m n
N =

= ∑  (Eq. 52) 

and 

( )2

1

1
1

N

e k e
k

v n m
N =

= −
− ∑  (Eq. 53) 

The SNR estimation SNRe is then defined by: 

e e
e

ee

m m
SNR

v σ= =  (Eq. 54) 
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3.3.2 Relative error of the mean estimator 

From Student t-distribution TN-1 with N-1 degrees of freedom, the 95 % confidence interval 

(noted 95 %-CI) relative error of the mean estimator 0.95
mε  can be derived: 

( )
0.025

0.95 1

30

2eN
m

N

t
N

mN SNR N

σε −
>

= ≈  (Eq. 55) 

where Nt
α  is defined as ( )1 1 1N NP T tα α− −> = −  where P is the probability density function. 

The relative error of the mean estimator depends on the number N of independent 
measures but also on the SNR. Most spaceborne imagery systems have a SNR greater 
than, let say, 50. Therefore, as illustrated by the figure 12, the relative error of the mean 
estimator is better than 0.4 % as long as the surface of the homogeneous region exceeds 
10x10 pixel.  

 

Figure 12:  95 %-CI relative error of the mean esti mator versus surface of 
the homogeneous region in pixel, for three differen t SNR. 

3.3.3 Relative error of the standard deviation esti mator 

From 2χ -distribution with N-1 degrees of freedom, the 95 % confidence interval relative 

error of the standard deviation 0.95
σε  can be derived: 

( )
2

1,0.0250.95 1 NN
N

σ
χ

ε −≈ −  (Eq. 56) 
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where 2
,N αχ is the inverse of the chi-square cumulative distribution function with N 

degrees of freedom at the values in α . 

One can note that the relative error does not depend on the SNR: it only depends on the 
number N of the independent measures available. Also of interest is the fact that the 
relative error of the standard deviation estimator is more than 30 times greater than the 
relative error of the mean estimator for the same surface, for SNR greater than 50. As 
illustrated in figure 13, a relative error better than 1 % requires a surface of the 
homogeneous region greater than 140x140 pixels. 

 

Figure 13:  95 %-CI relative error of the standard deviation estimator versus 
surface of the homogeneous region in pixel. 

3.3.4 Relative error of the SNR estimator 

For small mean and standard deviation estimation errors, dm and dσ , the corresponding 
SNR estimation error is given by: 

2

1 m
dSNR dm dσσ σ

= −  (Eq. 57) 

Thus, the relative error dSNR/SNR can be written as: 

 

1dSNR m dm m d
SNR SNR m

dm d
m

σ
σ σ σ
σ

σ

 = − 
 

= −
 (Eq. 58) 
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Then, 

 
0.95 0.95 0.95 0.95

50mSNR SNRσ σε ε ε ε
>

≈ ⊕ ≈
 (Eq. 59) 

In other words, for typical space borne imagery system (SNR > 50), the 95 %-CI relative 
error of the SNR estimator is close to the 95 %-CI relative error of the standard deviation 
estimator. figure 14 displays the 95 %-CI relative error of the SNR estimator. 

 

Figure 14:  95 %-CI relative error of the SNR estim ator versus surface of 
the homogeneous region in pixel (SNR > 50). 

3.3.5 Minimum surface and PSF extent 

figure 14 gives the required minimum surface for a given relative SNR accuracy. However, 
the SNR assessment should take into account the spatial quality of the imaging system. 
The extent of the PSF gives the minimum distance between the homogeneous region and 
the surrounding background to avoid surrounding “contaminations” on the standard 
deviation assessment. 

Consequently, given a relative SNR accuracy, the minimum homogeneous surface for 
SNR assessment, and more exactly for the assessment of the standard deviation, should 
obey these two constraints depicted in figure 15. 

• LT should be greater than the radius extent of the PSF; 

• LH x LW should be greater than the required minimum surface. 
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Figure 15:  Homogeneous region for SNR assessment. 

 

3.4 Methods to assess the SNR 

A method for assessing the SNR is made up of three components that are linked: the 
selection of the site, the method to compute the mean m and the noise σ, and the instant 
when to apply the assessment with respect to routine operations and other calibration 
operations. 

There are two approaches in the selection of a site: single view or synthetic landscape. In 
the single view approach, one image is acquired over a given site. In the synthetic 
landscape approach, several images are acquired and merged in order to create a 
synthetic landscape having the requested properties. 

3.4.1 Single view – Homogeneous area 

The principle of the single view for assessing the SNR is to find a homogeneous area 
representing a uniform landscape, to compute both the mean and the standard-deviation 
on this area and finally to build the ratio of the mean to the standard-deviation. 

Homogeneous areas have been identified in the world and are used in various calibration 
operation. However, according to the various publications, it appears that the selection of 
a large homogeneous area is a problem. There is only a few sites, e.g., Railroad Valley 
(Nevada, USA) (Biggar et al. 1991 [RD3]) or White Sands (New Mexico, USA), that may 
be suitable but their spatial homogeneity is not large enough (Henry and Meygret 2001 
[RD16]; Marham et al. 1990 [RD25]; Thome et al. 2004 [RD39]).  

Of course, the influence of the heterogeneity on the SNR assessment depends on the 
characteristics of the system. What is important are the scales of the heterogeneities with 
respect to the GSD. For a given intensity in heterogeneity, the larger the GSD, the smaller 
the influence is. The previous section shows that assessing the SNR for a large pixel size 
requests more ground surface than for a smaller pixel size. Thus, calibration sites may be 
suitable for certain systems and not for others. 

The mean value of the radiance of the landscape should be large enough to obtain a 
reliable assessment of the SNR. This prevents deep oceanic areas to be exploited to that 
goal because their reflectivity is low, outside sun glitter conditions. 
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It appears from the literature survey that selecting a homogeneous area and quantifying its 
homogeneity is not an easy task. Accordingly, authors have adopted different approaches 
to cope with this problem of homogeneity. Many of these works intend to select 
landscapes with no or little high frequencies and to suppress the low frequencies (also 
called background) in order to obtain a homogeneous landscape. 

3.4.2 Single view – Quasi-homogeneous area 

One of the most known methods is the Fourier transform of a portion of an image (Jenkins 
and Watts, 1969 [RD17]; Oppenheim and Schafer, 1975 [RD28]). The noise appears at 
high wavenumbers (high frequencies). However, the very chaotic behavior of the spectral 
density for high wavenumbers as well as the presence of large scale trends may render 
the estimates of both the noise σ and the mean m rather inaccurate. 

A more recent method is to exploit the variogram γ, also called structure function in 
turbulence (Panchev, 1971 [RD29]). Because the variance of the noise appears in the 
variogram as the nugget variance, variogram offer a good readiness of the noise variance 
even in presence of large variations of the actual signal. It is also invariant, by definition, to 
systematic errors. 

The variogram depicts the spatial variability at increasing distances h (scales) between 
sample points (Matheron, 1963 [RD26]): 

γ(h) = E((Z(x+h)-Z(x))²) (Eq. 60) 

where E is the mean operator.  

This quantity divided by two is called the semivariogram. The variogram puts on a rational 
and numerical basis the well-known concept of the "range of influence" of the variable in a 
fashion more or less similar to the covariance function for a stationary function. Figure 7 
illustrates a semivariogram in presence of uncorrelated noise. As the distance h increases, 
the semivariogram tends to the variance of the image. 

 

Figure 16:  Illustration of a semivariogram with un correlated noise. 

The variogram should equal 0 as h tends to 0. The value of γ(h) close to origin gives a 
measure of the variance of the structures the sizes of which are smaller than the sampling 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Distance h

V
ar

ia
nc

e 
γ



  
Image Quality TN-WP224-001-ARMINES 
 WP224 Issue 0.1 (draft version) 

VEGA Technologies SAS  Page 41 of 44 
© 2008 VEGA Group PLC    

size. This variance γ(0)/2 is called the nugget effect or nugget variance or random 
variance.  

The spatial behavior of Z(x) is closely related to the shape of γ(h) near the origin. If γ(h) is 
twice differentiable it the origin, then Z(x) is smoothly continuous and it contains rather 
energetic long wavelength terms. If γ(h) is linear near the origin, then Z(x) is continuous 
but not necessarily derivable. lf γ(h) is not continuous at the origin, hence presenting a 
nugget effect, Z(x) is not continuous and is rather erratic. 

In presence of uncorrelated noise, and if γtrue(h) denotes the actual variogram without 
noise, one obtains: 

γ(h) = γtrue(h) + 2 σ (Eq. 61) 

The nugget effect γ(0) is the variance of the noise σ. If the area is homogeneous, the 
spatial average of the radiance provides the mean m. If heterogeneous, the image may be 
locally detrended by adjusting e.g., a polynomial function. The residuals are considered as 
stationary; the variogram and the average may be computed.  
 
Curran and Dungan (1989) [RD6] and Wald (1989) [RD43] assessed the SNR for 
respectively AVIRIS and AVHRR images by this means. Outside the difficulties in 
detrending properly, the issue is the estimation of the unknown ( )0γ  from some estimated 
values of ( )hγ . If one assumes that ( )0γ and ( )1γ  are equal, one may overestimate the 
variance of the noise. Other approaches, such as extrapolation to ordinate using analytical 
forms of the semivariogram, may lead to underestimation. 

In a recent work [RD12], Guo and Dou (2008) propose a common and feasible way for 
estimating the variance of the noise, provided a suitable sub-image is found where the 
signal may be assumed to be stationary; the first application to FY-2 thermal imagery is 
convincing. 

In studies on signal denoising presented in [RD9], Donoho and Johnston (1994) compute 
the wavelet coefficients of quasi-homogeneous areas. These wavelet coefficients 
represent the local intensity of structures for a given scale. Taking the median absolute 
deviations noted MAD of the wavelet coefficients, Donoho and Johnston (1994) [RD9] find 
that the standard-deviation of the noise can be estimated in a very robust way by: 

σ = MAD / 0.6745 (Eq. 62) 

This method can also be applied in an area exhibiting smooth low frequencies; detrending 
is nevertheless necessary for the computation of the mean. 

More recently, Delvit et al. (2003) in [RD8] and [RD7] exploit both the wavelet transform 
and the variogram to compute the SNR. They stress the importance of the characterization 
of the landscape in order to discriminate the landscape information from the noise. They 
choose to model the semivariogram of an image by the following function: 

γ(h) = ec hb ea ln(h) (Eq. 63) 

where a, b, and c are parameters to be determined, called the landscape structure 
parameters.  

The proposed method is based on an artificial neural network (ANN). The principle is to 
firstly train the ANN for the noise of simulated or perfectly known images, and then to use 
the ANN to assess the noise of unknown images. Inputs to the ANN are the landscape 
structure parameters and elements that characterize the energy in high frequencies. The 
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authors choose the wavelet packets decomposition, focusing on those packets whose 
noise is prominent against the landscape signal on account of the damping of the MTF. 

More precisely, as illustrated by the figure 17, MTF induces very important damping in the 
diagonals of the Fourier space. For those Fourier areas, the landscape contribution is the 
image can be negligated.  

 

Figure 17: Example of adapted wavelet packets decom position to isolate 
wavelet coefficients where the MTF is low (source: [RD8]). 

The entropy and the L² norm of the packet are the inputs to the ANN. This method has 
also a similar component devoted to the assessment of the MTF; it is quite promising. Its 
qualities should be demonstrated in real cases. Though the authors claim that it should 
work for any type of landscape, it is believed that images exhibiting smooth landscapes 
with low-energy intrinsic high frequencies would be more suitable for SNR assessment. 

3.4.3 Synthetic landscape 

The constraint on a homogeneous existing area may be reduced if one considers a 
synthetic landscape. A synthetic landscape is constructed by the fusion of actual single 
images (Wald, 1999 [RD45]): the properties of the synthetic landscape are more suitable 
to SNR assessment than those of each single image. 

One possible solution is to exploit the existence of desert area whose reflectance is very 
stable in time, once corrected for bi-directional effects. Such areas were identified by 
Cosnefroy et al. (1996) [RD5] in Northern Africa.  

These sites are exploited by Eumetsat for the calibration of the Meteosat satellites 
(Govaerts 1999 [RD10]; Govaerts et al. 1998 [RD11]) VEGETATION (Henry, Meygret 
2001 [RD16]) and SPOT5 (Lebègue et al. 2003 [RD20]).  

If the same pixel is acquired at different cloud-free instants, a time-series of radiances may 
be constructed which should be constant. The mean and standard-deviation may be 
computed and the SNR assessed at this radiance level. This approach has not yet been 
exploited. However, a fairly close approach is used for SPOT5 for the column-wise noise 
(Lebègue et al. 2003 [RD20]). Snowy expanses of Greenland (in boreal summer) and 
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Antarctic (in austral summer) are assumed to be constant in time, at least between two 
consecutive passes. If the two images are perfectly superimposed, the landscape 
contribution at any scale can be eliminated by a simple difference at each pixel for the 
area of interest. The residuals are the noise. The standard-deviation is then computed 
from the residuals, the mean radiance is estimated from the mean of the two images and 
the SNR can be estimated.  

A parameterized model of column-wise SNR function of radiance provides the SNR value 
at the reference radiance L2: 

2

2 0

L
SNR

L v
=

ρ +
 (Eq. 64) 

where: 

• 2Lρ  is the variance of the photonic noise, proportional to the considered entrance 
radiance;  

• 0v  is the variance of the readout noise independent of the photonic noise 

Another possible solution is to construct this landscape by summing up cloudy images. 
After a certain period, all pixels are cloudy and under certain conditions, this synthetic 
landscape may be considered as uniform.  

The principle has been discussed by Vermote and Kaufman (1995) in [RD40] for absolute 
calibration. Under certain conditions, radiance reflected by thick clouds exhibits low spatial 
variance (Sèze, Desbois 1987 [RD35]; Sèze, Rossow 1991 [RD36]). If one is able to pick-
up such cloudy pixels and only those, one may construct a synthetic image of high 
radiance and low variance. This approach has not been tested for SNR assessment. For 
past experience, it should be recommended to focus on clouds over deep oceanic areas 
(e.g., southern hemisphere) to prevent any influence of the ground whose reflectance 
often exhibits marked spectral changes, and to avoid specular reflection at the surface of 
the ocean, which is marked by large gradients in reflectance (Wald, Monget 1983 [RD42]).  

Such an approach has been applied for performing inter-band calibration of POLDER 
(Asmami, Wald 1993a [RD2]) or AVHRR (Asmami, Wald 1993b [RD1]; Wald 1998 [RD44]) 
but for single images. These authors underline that cloud selection is crucial for accurate 
results and that it depends upon the wavelength under concern. For AVHRR, where the 
spectral bands are large, the method does not call upon very bright clouds. On the 
contrary, clouds with medium reflectivity are an ideal target. The method constructs the 
density of probability of the cloudy pixels and imposes constraints in representation of 
clouds of medium brightness. 

In [RD21], Lefèvre et al. (2000) devised a method for absolute calibration of Meteosat 
images that was successfully applied by Rigollier et al. (2002) [RD34] for the calibration of 
several years of images. This method may be applied to the assessment of the SNR.  

Lefèvre et al. [RD21] found two statistical quantities in Meteosat images that are constant 
with time. They state that this constancy is due to the fact that in the entire field of view of 
the Meteosat sensor, the mixed presence of land, ocean, and clouds of different reflectivity 
over approximately one third of the Earth, whatever the day and time of the year, may lead 
to the preservation of such statistical quantities with time.  

If L5(t) and L80(t) denote respectively the radiances corresponding to the percentiles 
respectively 5 % and 80 % of the histogram of radiances of the mid-day image, they found 
that  
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 (Eq. 65) 

i.e., the quantity (L80(t) – L5(t)) / I0(t) is constant over time, where I0(t) is the incoming 
extraterrestrial irradiance. If δ is the relative eccentricity correction characterizing the 
change with time in the distance between the sun and the earth, then 

I0(t) = I0 (1+δ) (Eq. 66) 

Using several images, one may construct a time series of this quantity, L5, and L80. Then, 
one may compute the mean value m 

m = E [(L80 + L5) / 2 (Eq. 67) 

and the noise σ: 

σ² ≈ var[(L80 – L5) (1 – δ)] (Eq. 68) 

where var denotes the operator of variance.  

This approach may be applied to sensors having a narrow field-of-view. In that case, 
several images of e.g., southern oceans with clouds should be summed up to find a 
constant statistical quantity. 

 


