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1. Introduction 

The ERS-2 scatterometer is a radar working at 5,3 GHz. The measurements produced by this radar allow
retrieving of important geophysical parameters as: the wind fields over oceans, the sea-ice coverage, the soil
moisture...etc.
This radar has three antennas looking 45° forward, backward and sidewards, called fore, mid and aft antenna
respectively. Measurements taken from three directions allow the determination of the wind direction.
The radar antennas illuminates a swath of approximately 500 km width is parallel to the sub-satellite track. A
regular grid of nodes, separated by 25 km, is defined inside the swath, and the final measurements are given
at each of these nodes.

Figure1: The ERS Satellite scatterometer

The primary objective of  the scatterometer  is  to  determine the wind fields over oceans using empirical
Geophysical Model Functions (GMF). These models are only valid over open sea, they are not valid over
land and sea-ice. Land is easily discarded using land masks. Over sea-ice it is more difficult to discriminate
open water and the ice due to the dynamic extent of the sea-ice which result from the freezing and melting
through the seasons. So as to remove spurious wind vectors we have to discriminate the sea and the ice at
real time.

A neural-network has been developed (Ref. 5, Ref. 6),  to compute the sea/ice probability P(H1|mc) at each
node of the grid. (where:  H1 is the hypothesis the measurement corresponds to ice, given the measurement
vector mc =(Cc; n), n is the node number in which the measurement Cc was made).
Some criteria can be used such as:  derivative of sigma, backscatter isotropy, distance to the wind model and
distance to ice model. This work is an attempt to enhance the sea-ice detection algorithm by adding other
criteria while the stateless strategy will be the same.
The Kp parameter, the standard deviation and the noise power may be sensitive to the difference between
ocean and sea-ice and will be considered.
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2. Ice detection algorithm overview

Given the measurement, the goal is to compute the probability P(H1|mc). A Multi-Layer Perceptron (MLP) of
one hidden layer containing 5 neurons is used. This MLP has two inputs: one for the criterion itself and one
for the node number.  If the criterion is a vector of two elements (Cc (1), Cc (2)), which means 3 inputs, the MLP
needs to have two hidden layers containing 10 neurons each. (Ref. 5, Ref.6)
The neural-network is trained using the IFREMER sea-ice map as reference, it provides the ice probability as
output. In order to perform a classification, this probability is thresholded.

The various criteria which were used to discriminate the sea-ice and the open water are:

The distance to ice model:

The idea is to use the euclidean distance to ice model as discriminating criterion. The model used is the ERS
ice model, which is described in  Ref. 4. It consists in an incidence angle-dependent line in the (σf, σa,  σm)
space. 

The distance to wind model:

The GMF allows retrieving wind speed and direction from measured backscatter. The euclidean distance to
the wind model was, hence, proposed as a discriminating criterion in Ref. 1. The backscatter measurements
acquired over sea-ice should lie close to the wind model, while measurements performed over ice might be
located further away from the wind model. However, since the σo  measurements over ice are actually very
close to the wind model at mid swath, this criterion will not be very discriminating at mid swath. We are
going to use the enhanced distance to wind model criterion (the fusion of the distance to ice model and the
direction  of  the  wind using  the  symmetric  associative  sum operator,  Ref.  6),  because  it  is  much  more
discriminant than the original criterion.

The derivative of the backscatter in function of the incidence angle:

In  Ref. 3, the derivative of the backscatter was proposed as discriminating criterion. Generally, the sigma
derivative (slope) over the sea is larger than over sea-ice. The derivative of the backscatter can be written as:

Where σf, σa and σm are the fore, aft and mid-beam measurements of the backscatter made at different angles
(in dB), and Ѳf, Ѳa and Ѳm are the incidence angles for the fore, aft and mid antennas (in degree).

The backscatter anisotropy: 

In Ref. 2, the backscatter anisotropy factor is proposed as discriminating criterion,  it is defined as:

Where σf and σa and are the fore and aft-beam measurements of the backscatter provided in dB.  Ice has a low
isotropy factor because it is supposed to be isotropic as EM backscattering is concerned. Furthermore, the
open sea generally results in a high isotropy factor, because of the wind. However, low isotropy values can
be measured over the sea. This occurs when the wind is blowing parallel or perpendicular to the satellite
ground track.
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Figure 2,3,4 and 5 show the output of the neural network P(H1|mc), respectively,  for the distance to ice 
model, the distance to wind model, the derivative of sigma and the sigma anisotropy.

    

         
 figure 2: Thresholded probability P(H1|mc)         figure 3: Thresholded probability P(H1|mc)

                              for the distance to ice model          for the distance to wind model

                   
    figure 4: Thresholded probability P(H1|mc)           figure 5: Thresholded probability P(H1|mc)            

for the derivative of sigma                        for the sigma anisotropy

The Blue colour corresponds to P <20% (Ocean with 80% probability).
The red colour corresponds to P >80% (Ice with 80% probability) 
And the green colour colour corresponds to the intermediate probabilities.

Based on figures above and comparing the various criteria, we conclude that the two best criteria are: the 
distance to ice model and the derivative of sigma. The area of uncertainty (the green area), corresponding to 
ice probabilities: 20% < P < 80% is small for these two criteria.

3. Improvement of the ice detection

In an attempt to enhance the ice detection algorithm, we introduce new criteria which can be combined with 
the other discriminating criterion seen in the previous paragraph (Ice detection algorithm overview).
In this paper, the standard deviation and the noise power are added as criteria to discriminate the ice and the 
open water, and combined with the other criteria specially the best sources of information as the distance to 
ice model, the derivative of sigma and the distance to the wind model taking into account the relative wind 
direction, using the existing combination methods (Ref. 9).

4. Kp parameter, Standard Deviation

The Kp parameter and the standard deviation are complementary data relative to the accuracy of the σ o

values which are determined for each node and each beam. The Kp parameter is related to the noise-to-signal
ratio with the following formula:

where M is the effective number of independent signal samples,  is the average of the measurements of σo

and  is the  equivalent of the noise power.  
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In practice the Kp parameter is computed as the normalized standard deviation according to the following
formula:

The Kp parameter is reported in the scatterometer products for each beam and node. The standard deviation
is deduced from the Kp parameter and the backscatter σo according to the following formula:

In order to assess the sensitivity of the standard deviation and based on the IFREMER data, acquired during
January 1999,  the graphs below are produced.  This graphs show the spatial  distribution of the standard
deviation over the South and the north pole.

        
Figure7: Standard deviation Map (South Pole)       Figure8:  Standard deviation Map  (North Pole)

From figures 7 and 8, we notice that the standard deviation takes, in average, different values over ice and
over open water. We notice that the values of the standard deviation over the ice are lower than its values
over open water. Nevertheless, the values of the standard deviation are also small over some homogeneous
land areas such as forests and deserts. 
Figures 9 and 10 show the distribution of the Kp parameter and the standard deviation for the sea and the ice
classes as a function of the incidence angle.

              
    Figure 9: Distribution of the Kp parameter for the            Figure 10: Distribution of the standard deviation

                       sea and ice classes.                                                            for the sea and ice classes.
                                                        

As we can see in the figures above, the measurements of the Kp parameter does not allow the sea/ice 
discrimination. The standard deviation is more discriminant than the Kp parameter, especially at low 
incidence angles. The values of the standard deviation over the sea are greater than it values over the ice.
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5. Backscatter noise

The scatterometer measures the backscattering coefficient of distributed targets with additive noise to the
received signal.  Consequently,  the noise power has to be measured separately in order to determine the
signal-only power, according to the following formula (Ref. 8):

Ps=Ps+n -Pn

where Ps+n is the signal + noise power, Pn is the noise power and Ps is the signal-only power.
The noise signal is composed of the receiver thermal noise, which represent the instrument noise: Pnr, and the
earth's thermal radiation integrated over the viewed ground: Pna. This second component has to be exploited
as it changes spatially, temporally and with the viewing geometry and can be combined with the distance to
ice model and the derivative of sigma. However, the thermal radiation is constant over the antenna footprint.
Figures 11 and 12 show the noise map in the north and south pole respectively.

           
                      Figure11: Noise Map (North Pole)                                  Figure12:  Noise Map  (South Pole)

As can be seen from figures above, the noise takes higher values over land and over the ice, moreover the
measurements over the boundaries which separate the ice and the sea are not accurate due to the very low
spatial resolution of the noise signal. Noise-data provided by the scatterometer corresponds to the whole
swath. Consequently the noise is not a very discriminant criterion.

6. Performance comparison of the individual criteria

The outputs of to the neural-network after training corresponding to the Kp parameter and the standard 
deviation, are represented, respectively, in figures 13 and 14.

                   
                                   Figure 13: Kp parameter                                      Figure 14: Standard Deviation

As can be seen from figures 13 and 14 the area of uncertainty corresponding to ice probabilities: 
20% < P < 80% are large for both Kp parameter and the standard deviation.
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The Receiver-Operating Characteristic (ROC) is used to assess the classifier performance. The ROC is a plot
of the true ice rate against false ice rate for varying threshold considered. A plot of the unclassified rate is
also used to compare the different criteria and their combination

The unclassified rate as a function of the node number is shown in figure 15, and the ROC (Receiver-
Operating Characteristic) for ice for the different criteria is shown in the figure 16.

Figure15: The unclassified rate for the different criteria in function of the node number for a false classification of 3%.

We notice that the standard deviation is more discriminant than the Kp parameter.

Figure 16: The Receiver-operating characteristic comparing the different discriminating criteria

As can be seen from figures 15 and 16, the Kp parameter and the standard deviation have a poor 
performance compared to the other criteria.
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7. Results

The fusion of the different criteria is used to reduce the imprecision and the uncertainty. To compute the
fusion of the neural-network outputs, the operator used is the mean operator, which relate the ice probability,
P1 and P2,  of two different criteria by to the following expression: 

m (P1, P2) = (P1 + P2) / 2
This formula can be readily extended for any number of measurements. We could also use the symmetric
associative sum operator, (Ref. 5, Ref. 6) which equation is written as:

s (P1, P2) = (P1 P2) / ( P1 P2 +(1 – P1) (1 – P2))    
However this operator performs slightly worse than the mean operator, which could be due to the fact that
the criteria combined are not totally independent.

figure 17:  Unclassified rate for different fusions of the criteria

figure 18: Receiver-operating characteristic comparing different fusions of the criteria
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In all figures above: 
icedist denotes: the distance to ice model. 
dist.Wind/ wind.dir denotes: the distance to wind model and the wind directions (Ref. 6).
sd denotes: thee standard deviation. 
Kp denotes: the Kp parameter. 
Der.sig denotes: the derivative of sigma.
M denotes: the mean operator.

The standard deviation, SD(σo), performs worse than the other criteria, however its fusion with the Distance
to ice model and the derivative of sigma enhances the performance, as the blue curve shows,  but only for low
false positive rate.
The  sea/ice  discrimination  criteria:  standard  deviation  and  the  noise  do  not  enhance  the  algorithm as
foreseen.

8. Conclusions

Using a neural-network framework and the ERS scatterometer data, we reviewed the standard deviation and 
the noise as sea/ice discrimination criteria and compared them to the existing criteria. We used the neural-
network framework because it consists on thresholding the conditional ice probability with clear trade offs.

The results of the comparison show clearly that the standard deviation and the noise perform worse than all 
the other existing criteria. The accuracy and the decisiveness of the results obtained by the fusion of an 
individual criterion are enhanced. Indeed, despite the poor performance of the standard deviation, its fusion 
with the distance to ice model, the derivative of sigma and the distance to wind model improves the precision
of the result.
These results are more accurate than what we got before (Ref. 6), especially in the region of the curve with 
low false positive rate (Ice classified as sea rate). Therefore, the standard deviation does not improve the 
results as expected.
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