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Preface

This document describes the details of how the climatological model of ionospheric currents is
derived. The model is essentially a model of the magnetic field which is associated with the
ionospheric currents. Section 1 describes the mathematical formulation that we use for the magnetic
field, the data set that we use to constrain this formulation, and the inversion technique that is
used. In Section 2 we clarify certain aspects regarding the interpretation of the model. In Section 3
we describe how ionospheric currents can be calculated from the model parameters. In that section
we also describe an approach for relating the model magnetic field in space to ground perturbations.

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
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1 Magnetic field model description

In this section we present 1) the mathematical representation that we have chosen for the distur-
bance magnetic field in space, above the horizontal ionospheric current layers, 2) the data set that
we use to constain this representation, and 3) the details of how the model inversion is performed.

1.1 Mathematical formulation

The model formulation builds upon the description used by Laundal et al. [2016], the key parts
of which are repeated here. The magnetic perturbation field, ∆B, can be represented as a sum of
poloidal and toroidal parts [Backus, 1986, Olsen, 1997]:

∆B = ∆Bpol + ∆Btor = −∇V + r×∇T. (1)

where V and T are scalar potentials that relate to the poloidal and toroidal parts of the magnetic
field, respectively. These potentials we represent in terms of spherical harmonics:

V (λq, φmlt, h) =RE
∑

n,m

(
RE

RE + h

)n+1

Pmn (θq)[g
m
n cos(mφmlt) + hmn sin(mφmlt)], (2)

T (λm, φmlt) =
∑

n,m

Pmn (θm)[ψmn cos(mφmlt) + ηmn sin(mφmlt)], (3)

where the spherical harmonic coefficients, gmn , h
m
n , ψ

m
n and ηmn are functions of certain external

parameters, to be described in more detail below. Pmn are Schmidt semi-normalized Legendre
functions of degree n and order m. RE is the Earth’s radius, and h is geodetic height. λq is quasi-
dipole (QD) latitude, and λm is modified apex (MA) latitude. θq = 90◦ − λq and θm = 90◦ − λm.
QD and MA coordinates are variants of apex coordinate systems, defined by Richmond [1995].
The longitudinal parameter, φmlt, is the magnetic local time as defined by Laundal and Richmond
[2017], using QD/MA longitudes (these are always equal). QD and MA coordinates are non-
orthogonal, and so evaluation of (1) involves base vectors which depend on the local structure of
the Earth’s main magnetic field. The relevant base vectors are called fi and di below, and they are
calculated using code published by Emmert et al. [2010]1. We use the following expressions [Laundal
et al., 2016] for the geodetic eastward (subscript e), northward (n) and upward (u) components,
respectively:

1This code is accessed through the Python wrapper available at https://github.com/cmeeren/apexpy
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∆Be =
−d1,n
cosλm

∂T

∂φmlt

+
d2,n

sin Im

∂T

∂λm

− f2,n
RE + h

1

cosλq

∂V

∂φmlt

+
f1,n

RE + h

∂V

∂λq
(4)

∆Bn =
d1,e

cosλm

∂T

∂φmlt

− d2,e
sin Im

∂T

∂λm

+
f2,e

RE + h

1

cosλq

∂V

∂φmlt

− f1,e
RE + h

∂V

∂λq
(5)

∆Bu =−
√
F
∂V

∂h
(6)

where2

sin Im =
2 sinλm√

4− 3 cos2 λm
. (7)

Equations 1−7 relate the magnetic field ∆B to the spherical harmonic coefficients, hmn , g
m
n , η

m
n , and

ψmn . In the model presented here, these spherical harmonic coefficients are functions of external
parameters. Each coefficient is written in terms of 19 other coefficients. Using gmn as an example,
the expansion that we use is:

gmn =gmn1 + gmn2 sin θc + gmn3 cos θc + gmn4ε+ gmn5ε sin θc + gmn6ε cos θc+

gmn7β + gmn8β sin θc + gmn9β cos θc + gmn10βε+ gmn11βε sin θc + gmn12βε cos θc+

gmn13τ + gmn14τ sin θc + gmn15τ cos θc + gmn16βτ + gmn17βτ sin θc + gmn18βτ cos θc+

gmn19F10.7. (8)

Here
θc = arctan2(By, Bz) (9)

is the IMF clock angle, which depends on the GSM y and z components of the interplanetary
magnetic field (nT is consistently used as a unit for magnetic fields). β is the dipole tilt angle in
degrees, and ε is the Newell et al. [2007] coupling function,

ε = 10−3|vx|4/3
√
B2
y +B2

z

2/3

sin8/3(θc/2). (10)

vx is the GSM (or GSE) x component of the solar wind velocity, in km/s. We also define a quantity

τ = 10−3|vx|4/3
√
B2
y +B2

z

2/3

cos8/3(θc/2), (11)

2There is a typo in the corresponding equation in the paper by Laundal et al. [2016], where cosλm is not squared.
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which is similar to ε, only that it maximizes for purely northward IMF instead of southward IMF.
Finally, F10.7 is an index of the 10.7 cm radio flux coming from the Sun, a much used proxy for the
intensity of ionizing EUV radiation. The unit for F10.7 is ”solar flux units” (SFU). Pre-processing
of these external parameters is described in more detail in the next section (1.2).

Equations 1−11 can be combined to relate the magnetic disturbance field, ∆B, to the coefficients
hmn,i, g

m
n,i, η

m
n,i, and ψmn,i, i = 1, 2, . . . , 19. The total number of coefficients depends on the truncation

levels chosen in Equations 2 and 3. We choose NV ,MV = 45, 3, and NT ,MT = 65, 3, which leads
to a total of 758 terms in the spherical harmonic representations, each of which depends on 19
parameters (Equation 8). In total, the model has 14,402 parameters.

1.2 The data

The parameters are estimated by use of magnetic field measurements from the CHAMP and Swarm
satellites.

We use vector measurements, with main field model predictions [Finlay et al., 2016] subtracted.
The main field model includes the magnetic field of the Earth’s core and crust, and an estimate
of the large-scale magnetospheric (basically the symmetric ring current) field. The remaining field
is presumably associated with ionospheric currents: Polar and equatorial electrojets, Birkeland
currents, and solar quiet currents. We use low Earth orbit 1 Hz measurements, sampled at 30
second cadence. The CHAMP data are from August 2000 to September 2010. Swarm data are
from December 2013 to August 2016. The only selection criterion is that the coinciding external
parameter is available (see details below). Possible outliers are handled in the inversion step (see
1.3).

Swarm Alpha and Charlie fly side-by-side. For our purposes, their measurements are not sta-
tistically independent, and so they are weighted by 0.5 in all the following statistics, including the
model parameters.

Solar wind measurements are obtained from OMNI 1-min values3. As a pre-processing step,
we calculate the mean of these measurements based on the 20 preceding minutes. If no data is
available during that period, the data point is discarded. A justification for this is given in Section
2.

F10.7 is provided on a daily basis4. The daily values are linearly interpolated to the times of
the satellite measurements.

The dipole tilt angle is calculated at the time of the satellite measurements, using equation 15
from Laundal and Richmond [2017].

In total, we have 16,839,394 vector measurements, and three times as many components. The
solution will be dominated by the most frequently appearing external values, so therefore we plot
their distribution in Figure 1. Alpha and Charlie data points are attributed half weight in these
distributions.

3Available from https://omniweb.gsfc.nasa.gov/ow min.html
4Available from http://lasp.colorado.edu/lisird/
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Figure 1: Histograms showing how the data points used to make the model are distributed with
respect to different variables and coordinates, denoted by axis labels. Each histogram is based on
16,839,394 points, except for the solar wind plots which are truncated at the extreme ends of the
distributions. Measurements from Swarm Alpha and Charlie are weighted by 0.5 in these plots. In
the 2D plots, increasingly dark blue color denotes more frequent values.

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.



Description of Algorithm
Page 10 of 16 Doc.No: SW-DD-BCSS-GS-0001, Rev: 1A

1.3 Inversion

Estimating the model parameters essentially corresponds to solving the inverse problem

Gm = d (12)

where m is a column vector with the 14,402 model parameters, hmn,i, g
m
n,i, η

m
n,i, ψ

m
n,i. d is a column

vector of measured eastward, northward, and upward components, 50,518,182 elements in total. G
is the design matrix, with D = 50, 518, 182 rows and U = 14, 402 columns, which relate the model
parameters to the measurements, according to equations 1−11.

This over-determined set of equations is solved by iteratively re-weighted least squares, explained
here in detail. First, we multiply equation 12 by a D×D weight matrix Ws, whose elements are zero
except at the diagonal where they are 1 at the rows corresponding to CHAMP and Swarm Bravo
measurements, and 0.5 at the rows corresponding to Swarm Alpha and Charlie measurements. This
weighting is introduced because Alpha and Charlie fly side by side, and are assumed not to provide
independent measurements at the scales resolved by the model. Then we multiply the equation by
G>. An initial solution can be written as

m0 = (G>WsG + R)−1G>Wsd. (13)

Here we have also introduced an U ×U regularization matrix R. The regularization matrix is zero
everywhere except at the diagonal elements corresponding to ψmn,i and ηmn,i. These elements are

κ2n(n+ 1)/(2n+ 1), where κ2 is a regularization parameter. Equation 13 is solved using Cholesky
decomposition, using the Python Scipy library, which calls the LAPACK library [Anderson et al.,
1999]. This is only possible if G>WsG + R is positive definite. We choose the smallest value
for the regularization parameter κ2, in powers of 10, for which G>WsG + R is positive definite.
No regularization is needed for the poloidal field parameters. The need for regularization in the
toroidal parameters probably has to do with the facts that 1) modified apex coordinates do not
cover the whole globe at satellite height (equatorial latitudes are missing, as seen in Figure 1), and
2) near the equator the latitudinal variation of T is not well constrained (see equations 5 and 4),
since d2,e and d2,n are very small there. While T will be defined at low latitudes, we do not expect
it to be physically meaningful there (meaning that field-aligned currents at low latitudes are not
resolved).

In the next steps, we introduce an additional set of weights according to the data misfit in
the previous iteration. With mj as the solution of the j’th iteration, we calculate residuals, ej =
d−Gmj . Based on these, a set of Huber weights [Huber, 1964] is calculated,

wij = min(1, 1.5σj/|eij |) (14)

where eij is the i’th elements in ej . σj is the root mean square of the elements in ej , where the
mean is also calculated robustly, using iterative re-weighting by Huber weights. The (j + 1)’th
iteration for the model parameter vector can be written

mj+1 = (G>Wh
jW

sG + R)−1G>Wh
jW

sd. (15)

where Wh
j is a diagonal weight matrix of Huber weights, calculated by (14) using the residuals

from the j’th iteration. The final solution is achieved when ‖mj−1 −mj‖ < 10−2‖m0‖.
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This iterative technique reduces the effect of outliers, so that the final solution better represents
typical values, which may be different from the plain mean. The currents will typically be weaker
and smoother in later iteration steps than they are in the first step. The black contours in Figure 1
show the distributions of the external parameters for the input, weighted by the final set of Huber
weights found by following the scheme described above. It is clear that the black contours are not
significantly different from the distributions shown in blue, which are not Huber-weighted. If they
were different, it would indicate that the model formulation was valid only for typical conditions,
and that other functional relationships are more suitable at extreme values. We conclude that the
model formulation is generally appropriate.

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
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2 A note about model interpretation

The model represents the global average ionospheric disturbance magnetic field associated with
the direct interaction between the magnetosphere, whose state is described by the dipole tilt
angle5, and the solar wind (described by its speed in the GSM x direction) and the interplanetary
magnetic field (described by its components in the GSM yz plane). A detailed discussion of this
interpretation belongs in a scientific publication. However, since it directly impacts the choice of
parametrization and data pre-processing, some aspects of the interpretation are discussed below.

First, the model should be regarded as an ”equation of state” rather than a dynamic description
of the magnetic field and currents. It can be used to analyze average configurations of the current
systems, but not dynamical changes. We emphasize that the true current system is strongly
structured in space and time, while this model only captures the quasi-static large-scale variations.

The choice of parametrization in equation 8 dictates which processes whose effect the model
can describe. The processes are subsolar reconnection, which is assumed to be proportional to
ε [Newell et al., 2007], and lobe reconnection, which is assumed to be proportional to τ . The
reconnection effects are also dependent on the IMF clock angle and on the seasons. Combining
the solar wind and IMF parameters to ε and τ is a key difference from the parametrization used
by Weimer [2013]. Another key difference is that we include multiplicative cross terms between
the parameters. This prevents one parameter from completely overshadowing the others during
extreme conditions, unless the data dictates such a behaviour. For example, in Weimer’s model
there will, a priori, be negligible seasonal variations when the solar wind speed is large, since the
terms containing dipole tilt and solar wind speed are completely decoupled.

In order to interpret the model as the average effect of dayside reconnection, it is important that
the input represents the instantaneous solar wind/IMF impacting the magnetopause. Naively, this
suggests using as high time resolution input as possible. However, it is probably more appropriate to
use some time averaging of the input, since 1) in situ high resolution measurements of the solar wind
may not be a good representation of its large-scale structure due to spatial variations/turbulence,
and 2) the time shift from the solar wind monitor to the magnetopause will be imperfect (we use the
time shift given by OMNI, which propagates the measurements to the bow shock). These effects
can likely be reduced by low-pass filtering (time averaging). However, increasing the window for
temporal averaging will lead to another complication: The dayside and nightside reconnection rates
will become increasingly well correlated. We want to avoid this, in order to have a clear physical
interpretation of the model in terms of dayside processes.

As a trade-off between these effects, we have chosen an averaging window of 20 min for the solar
wind IMF measurements, covering the time prior to the time of the associated LEO measurement.
That means that, if x(t) is the OMNI 1-min solar wind parameter at time t, we use x(t) =∫ 0
t−20

x(t)
20 dt. That choice is based partly on the analysis presented in Figure 2. In this figure we

show the correlation between high time resolution magnetic indices and the ε parameter averaged
over increasingly large windows, ranging from 1 to 60 min. The correlation increases monotonically
in all cases, except for the case of the PC index. This increase is attributed to all the three effects
described in the previous paragraph. The increase tends to be steepest prior to ∼ 20 min.

5and strictly speaking also the F10.7 index, although it is assumed to be much less important at high latitudes
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Description of Algorithm
Doc.No: SW-DD-BCSS-GS-0001, Rev: 1A Page 13 of 16

0.60

0.65

0.71

AL index

co
rre

la
tio

n 
wi

th
 

 v
s. 

av
er

ag
in

g 
wi

nd
ow

 si
ze 1 min 20 min 60 min

0.55

0.59

0.62

AU index

1 min 20 min 60 min

0.43

0.47

0.50

CHAMP / Swarm Bravo 
| B| at | q| > 55

1 min 20 min 60 min

0.65

0.72

0.74

PC index

1 min 20 min 60 min

Figure 2: Plots of the Pearson correlation coefficient of four different parameters, at 1 min time
resolution, with the Newell et al. [2007] ε (equation 10) coupling function as a function of averaging
window size for ε. The temporal averaging is applied only to ε. Correlation coefficients at three
different averaging window sizes are indicated in each plot. The indices and solar wind data come
from the OMNI database. The ‖∆B‖ values used in the right plot are from CHAMP/Swarm Bravo
1 Hz data, sampled at 1 min cadence, in the region poleward of 55◦. The plot is based on the period
2000−2016.

3 Currents and ground perturations

In this section we describe 1) how the ionospheric currents can be calculated from the model
parameters, and 2) an approach for calculating the magnetic field perturbation on ground that are
associated with the ionospheric currents. The currents are calculated at the height hR, which is also
the reference height in the modified apex coordinate system. At this height, λq = λm, so we skip
the subscripts. We also use φ instead of φmlt. We give the units for each quantity, assuming that
µ0 is provided in units of Tm/A, and RE , hR in units of km. The spherical harmonic coefficients
have units nT.

The currents are evaluated at h = hR. They are essentially calculated from ∇×∆B/µ0, treating
the apex coordinates as orthogonal spherical, and h+RE as the geocentric radius.

The vertical current density (unit µA/m2) is:

Ju(λ, φ) =− 10−6

µ0(RE + hR)

∑

n,m

n(n+ 1)Pmn (θ) [ψmn cosmφ+ ηmn sinmφ]

The horizontal sheet current density is:

J = Jdf + Jcf = k×∇Ψ +∇α, (16)

where we have written Jdf in terms of a scalar field Ψ, and Jcf in terms of a scalar field α. k is an
upward unit vector.

The scalar for the divergence-free part Ψ (unit µA) is:

Ψ(λ, φ) = −RE
µ0

∑

n,m

2n+ 1

n

(
RE

RE + hR

)n+1

Pmn (θ) [gmn cosmφ+ hmn sinmφ] (17)
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This equation for Ψ corresponds to an equivalent current function of internal origin, as described
in Chapman and Bartels [1940].

The scalar for the curl-free part α (unit µA) is6:

α(λ, φ) = −RE + hR
µ0

∑

n,m

Pmn (θ) [ψmn cosmφmlt + ηmn sinmφ] (18)

From (16), we get the following expressions for the eastward and northward components of Jdf and
Jcf (unit mA/m):

Jdf,e = −10−6

µ0

∑

n,m

(
RE

RE + hR

)n+2 2n+ 1

n

dPmn (θ)

dθ
[gmn cos(mφ) + hmn sin(mφ)] (19)

Jdf,n =
10−6

µ0 cosλ

∑

n,m

(
RE

RE + hR

)n+2 2n+ 1

n
Pmn (θ)m[gmn sin(mφ)− hmn cos(mφ)] (20)

Jcf,e =
10−6

µ0 cosλ

∑

n,m

Pmn (θ)m[ψmn sin(mφ)− ηmn cos(mφ)] (21)

Jcf,n =
10−6

µ0

∑

n,m

dPmn (θ)

dθ
[ψmn cos(mφ) + ηmn sin(mφ)] (22)

The total horizontal eastward current is (19) + (21), and the northward horizontal current is (20)
+ (22).

3.1 Corresponding ground magnetic field perturbations

By making some simple assumptions it is possible to calculate ground magnetic field perturbations
from the model coefficients. The first assumption is that the equivalent current function Ψ (17) is
equal to an equivalent current function associated with the external part of the magnetic potential
at ground, as defined by Chapman and Bartels [1940]: First, we express the perturbation magnetic
field below the ionosphere as ∆B = −∇V where

V = RE
∑

n,m

Pmn (θ)

[(
amn,e

(
r

RE

)n
+ amn,i

(
RE
r

)n+1
)

cos(mφ)

+

(
bmn,e

(
r

RE

)n
+ bmn,i

(
RE
r

)n+1
)

sin(mφ)

]
. (23)

The subscripts of the Gauss coefficients, e and i, indicate if the associated field is of external or
internal origin, respectively. The external field coefficients correspond to a current at r = RE +hR,
j′df = r̂×∇Ψ′, where

Ψ′ = −RE
µ0

∑

n,m

2n+ 1

n+ 1

(
RE + hR
RE

)n
Pmn (λq)

[
amn,e cos(mφ) + bmn,e sin(mφ)

]
. (24)

6There is a sign error in the corresponding equation (22) in Laundal et al. [2016] which has been corrected here
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By assuming that Ψ = Ψ′ (equation 17 = equation 24) we find how amn,e and bmne
relate to

gmn and hmn . Using these relationships, and (23), we find the expression for the associated ground
perturbations. At r = RE , they are (unit nT):

∆Be = − 1

cosλ

∑

n,m

(
RE

RE + hR

)2n+1 n+ 1

n
Pmn (θ)m[gmn sin(mφ)− hmn cos(mφ)] (25)

∆Bn = −
∑

n,m

(
RE

RE + hR

)2n+1 n+ 1

n

dPmn (θ)

dθ
[gmn cos(mφ) + hmn sin(mφ)] (26)

∆Bu =
∑

n,m

(
RE

RE + hR

)2n+1

(n+ 1)Pmn (θ)[gmn cos(mφ) + hmn sin(mφ)] (27)

Some things to consider about these expressions:

• The eastward and northward magnetic field components should be treated as being equivalent
to what Richmond [1995] calls ∆Bqφ and ∆Bqλ, respectively (equations 7.12 and 7.13 in that
paper)
• The equations are evaluated at r = RE . To keep r as a free parameter (at< RE+hR), multiply

by rnR−nE in the horizontal components, and by rn−1R1−n
E in the vertical component.

• We have made an assumption about the current sheet height, hR. Our default value for this
is 110 km. Increasing it decreases the associated magnetic field perturbation on ground.
• We have essentially neglected the internal induced field, in practice assuming that it is zero.

Other assumptions are certainly possible to make, possibly improving ground magnetic field
predictions.

Finally, we emphasize that the ambiguity/freedom in predicting ground magnetic field perturbations
is not present in space, above the current sheet. There the model magnetic field components are
given in terms of equations 4−6.
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