

Outline

PART 1

- The Earthquake Cycle
- Earthquakes some definitions
 - Strike/Dip/Rake
 - Moment
- Coseismic Deformation
 - Dip-Slip earthquakes (Normal and Thrust)
 - Strike-Slip earthquakes

PART 2

- Interseismic and Postseismic Deformation
- Models of Earthquake Cycle deformation

Elastic Dislocation Modelling

Y. Okada, 1985. Surface deformation due to **shear** and tensile faults in a half-space. *Bull. Seism. Soc. Am.*, 75, 1135-1154

To define a rectangular fault dislocation, need 10 parameters:

- Location of fault x,y,z (x=y=0, z = -d) [1]
- Length, Width and dip of the fault (L, W, δ) [3]
- Slip components (u_1 = strike-slip; u_2 = dip-slip; u_3 = tensile) [3]
- 3D Displacements can be calculated for a point (x_{obs}, y_{obs}) in the fault-centred reference frame, where the x-axis points along strike. [3]

Elastic Dislocation Modelling

Code in today's practical takes 7 'friendly' fault parameters:

- x, y-position of centre of fault's surface projection, set at 0,0 [0]
- Strike, Dip and Rake of fault (Aki, and Richards convention) [3]
- Magnitude of earthquake slip vector ($u_3 = 0$, i.e. no opening) [1]
- Top and Bottom Depths (measured vertically), Fault Length [3]

To define a rectangular fault dislocation, need 10 parameters:

• Location of fault x,y,z ($x=y=0, z = -d$)	[1]
• Length, Width and dip of the fault (E, W, δ)	[3]
• Slip components ($u_1 = strike-slip$; $u_2 = dip-slip$; $u_3 = tensile$)	[3]

• 3D Displacements can be calculated for a point (x_{obs}, y_{obs}) in the fault-centred reference frame, where the x-axis points along strike. [3]

Earthquake Magnitudes and Moments

$$M_{o} = \mu As \qquad \text{SI units}$$

$$M_{w} = \frac{2}{3} \log_{10} M_{o} - 6.0$$

$$M_{o} = 10^{[1.5M_{w}+9]}$$

Determining best-fit elastic models

- Calculating the predicted displacements from a specified fault geometry (forward modelling) is relatively easy.
- The inverse problem (finding the model that fits a given set of displacements) is harder:
 - Finding the fault geometry is a non-linear inversion problem.
 - Determining slip distributions for a fixed fault geometry is a linear problem.

Denali Earthquake

Trans Alaska Pipeline

Richardson Highway

Conclusions

- Quantity and quality of geodetic observations of earthquake cycle deformation has dramatically increased in last 20 years.
- Simple rheologies are incompatible with both postseismic and interseismic deformation.
- Spatial variations in material properties provide the most satisfactory solution.
- Further work required to integrate geological, geodetic, seismic, model, and lab views of fault zones.