fé".' HAROKOPIO UNIVERSITY \\\&Q&; esa

2 Lth ADVANCED TRAINING COURSE IN LAND REMOTE SENSING

CURRENT SCENARIO AND CHALLENGES IN
THE ANALYSIS OF MULTITEMPORAL REMOTE
SENSING IMAGES

Lorenzo Bruzzone
E-mail: lorenzo.bruzzone@ing.unitn.it

Web page: http://rslab.disi.unitn.it

1-5 July 2013 | Harokopio University | Athens, Greece

HAROKOPIO UNIVERSITY

Outline
..... SN GO R LA PUT C MUNEmEeE] [REEs
g O et = .. .
& Change detection in VHR multispectralimages =~~~ .
P Change detection in multisensor/multisource VHR images
..... o o

3 hith ADVANCED TRAINING COURSE IN LAND REMOTE SENSING © Lorenzo Bruzzone

1-5 July 2013 | Harokopio University | Athens, Greece




HAROKOPIO UNIVERSITY &&i_ esa

2 4th ADVANCED TRAINING COURSE IN LAND REMOTE SENSING

1. Current Trends and Background on Multitemporal
Images

1-5 July 2013 | Harckopio University | Athens, Greece © Lorenzo Bruzzone

HAROKOPIO UNIVERSITY

Multitemporal Images

In the last ten years we had a significant increase in the interest on topics related
to the time series and the analysis of multitemporal data:

v’ Sharp increase in the number of papers published on the major remote sensing
journals (e.g., IEEE Transactions on Geoscience and Remote Sensing, IEEE
Geoscience and Remote Sensing Letters, IEEE Journal on Selected Topics in Applied
Earth Observation and Remote Sensing, Remote Sensing of Environment,
International Journal of Remote Sensing).

v Increased number of related sessions in international conferences.

v' Increased number of projects related to multitemporal images and data.
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Multitemporal Images

The increased interest in multitemporal data analysis is due to many issues:

v Increased number of satellites with increased revisitation time that allow
the acquisition of either long time series or frequent bitemporal images.

v" New policy for data distribution of archive data that makes it possible a
retrospective analysis on large scale (e.g. the Landsat Thematic Mapper
archive).

v New policies for the distribution of new satellites data (e.g. ESA Sentinel).
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Multitemporal Images: Change Detection

v' Change detection (CD): process that analyzes multitemporal remote sensing
images acquired on the same geographical area for identifying changes
occurred between the considered acquisition dates.

v" We can define different change detection problems:
¢ Binary change detection.

¢ Multiclass change detection.

¢ Change detection in long time series of images.
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Binary change detection

AN

Taxonomy of CD Problems

Goal: production of binary maps in which changed and unchanged areas are separated;
Number of images: 2 (or pairs of images extracted from a series);
Application domain: detection of abrupt (step) changes.

Mexico, April 2000
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Taxonomy of CD Problems

v Goal: generation of a change-detection map in which land-cover transitions are

v" Number of images: 2 (or pairs of images extracted from a series);

v Application domain: updating thematic maps, detection of multiple changes.
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Taxonomy of CD Problems

v’ Goal: detection of changes associated with modifications of the behavior of the
temporal signature of a land cover between two time series (detection of long term
changes);

v Number of images: 2 time series made up on n images (n>>2);

v Application domain: monitoring seasonal/annual changes.
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Data Pre-processing

X, Xy

t, image ‘—y ¢—‘ tyimage
orrection

Very important with optical images

Mandatory in all change-detection
techniques ge Reg
Depends on the specific sensor
considered and on the quality of the
considered images

Depends on the requested acquisition
frequency and data availability (careful
application, see information theory!)
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Data Pre-processing: Radiometric Corrections

Differences in light and atmospheric conditions between the two acquisition
times can be mitigated by applying radiometric calibration to the images. Two
different approaches can be applied:

v digital numbers are transformed into the corresponding
ground reflectance values (radiometric transfer models, regression algorithms
applied to ground-reflectance measurements collected during the data acquisition
phase).

v modification of the histograms, so that the same gray-levels
values in the two images can represent the same reflectance values, whatever the
reflectance values on the ground may be (histogram matching).

The choice of one of the two approaches depends on the particular application
considered and on the specific information available.
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Data Pre-processing: Image Registration

Generally it is not possible to obtain a perfect alignment between multitemporal
images. This is mainly due to local defects in the geometries of the images.

B

Residual misregistration results in a very critical source of noise, which is called

Shift vs. error for 1 x 1 meter pixels
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Binary Change Detection in Remote Sensing

Binary change detection in remote-sensing images is characterized by several
peculiar factors that render ineffective some of the multitemporal image analysis
techniques typically used in other application domains. Some of these factors are:

v’ Differences in light conditions, sensor calibration, and ground moisture at the two
acquisition dates considered;

v Absence of a reference background;

v' Lack of a priori information about the shapes of changed areas;

v Non-perfect alignment (registration noise) between the two considered images;

v’ Different acquisition conditions of multitemporal images (view angle, shadows,
etc.).
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Binary CD: Typical Architecture
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CD in Multispectral Images: Comparison Operators

Univariate image differencing fk — lej XD — 'I:1 — f2 _|_C
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Principal component fk = [Pl\lv " Pkm] XD = || f1 = fz

Analysis

b: variable associated with the spectral channel
k: variable associated with the acquisition date
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CD in SAR Images: Comparison Operators

Kullback-Leibler distance
(Similarity measures)

Difference of scattering - g
matrix element products fk w [SHH SI"'V ]

Difference of scattering
matrix amplitude correlation
coefficients

k: variable associated with the acquisition date
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Change Vector Analysis (CVA)

only 2 spectral channels are considered for each date.
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Polar Change Vector Analysis

Polar Domain
D ={p.9:0<p<p,, and 0<9<27x}
p -> Random variable associate to magnitude image X,

4 ->Random variable associate to direction image X4

C,={p.9:0<p<T and 0<9<2r}

Annulus of changed pixels
A ={p9:T<p<p,, and 0<9<2rx}
S

Sy ={p,9:p2T and 4, <9<, 09, <Y, <27z}
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Polar Change Vector Analysis: Example
Study area: Lake Mulargia, Sardinia Island (Italy).

Multitemporal data set: a portion of 412x300 pixels of two images acquired by the TM
sensor of Landsat-5 satellite in September 1995 and July 1996.

Before Change After Change Reference Map
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Polar Change Vector Analysis: Example

Corrected Images (Ideal case) Registration noise effects Radiometric difference effects
D 415 @ 115 D 415
: &0 H 6 H

Optimal threshold value on the Registration noise effects Threshold value on the magnitude
magnitude variable: ideal case variable: radiometric distortion case

F. Bovolo, L. Bruzzone, A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in Polar Domain,
IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No.1, 2007, pp.218-236.
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Polar Change Vector Analysis: Example

Lake Mulargia, Sardinia Island (ltaly).

a portion of 412x300 pixels of two images acquired by the TM
sensor of Landsat-5 satellite in September 1995 and July 1996.

1 natural change, 1 simulated change.

Simulated burned area
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F. Bovolo, S. Marchesi, L. Bruzzone, “A Framework for automatic and unsupervised detection of multiple changes in multitemporal
images,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2196-2212, 2012.
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Multispectral Images
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New Satellites with VHR Multispectral (MS) Sensors
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July 2006 October 2005
Quickbird images of the city of Trento (ltaly)
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CD in Multitemporal VHR MS images

October‘ZOOS July 2006
Quickbird images of the city of Trento (ltaly)
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CD in Multitemporal VHR MS images

Quickbird images of
the city of Trento (Italy)
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Unsupervised CD: Typical Architecture
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CD in Multitemporal VHR Images: Example
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CD in Multitemporal VHR images

Change detection in VHR Images should exploit a top-down approach to the
definition of the processing architecture. This approach should:

v’ explicitly model the presence of different radiometric changes on the basis of the
properties of the considered images;

v’ extract the semantic meaning of changes;

v’ identify changes of interest with strategies designed on the basis of the specific
application;

v exploit the intrinsic multiscale properties of the objects and the high spatial
correlation between pixels in a neighborhood.

L. Bruzzone, F. Bovolo, “A Conceptual Framework for Change Detection in Very High Resolution Remote Sensing Images,” Proceedings of IEEE,
March 2013.
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CD in VHR MS Images: Architecture Design

( Multitemporal data set
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Identification of the Tree of Radiometric Changes
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Detection of Changes of Interest
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Multilevel Approach: Semantic of Changes
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L. Bruzzone, F. Bovolo “A Conceptual Framework for Change Detection in Very High Resolution Remote Sensing Images,” Proceedings of
IEEE, March 2013.
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Example: CD in VHR Optical Images

South part of Trento (lItaly).

portion (380x430 pixels) of two images acquired by the
Quickbird satellite in October 2004 and July 2006.

changes on the ground, , registration noise.

»
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Example: CD Architecture Design
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Multilevel Representation of Radiometric Changes
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S. Marchesi, F. Bovolo, L. Bruzzone, “A Context-Sensitive Technique Robust to
Registration Noise for Change Detection in VHR Multispectral Images”, IEEE
Transactions on Image Processing, Vol. 19, pp. 1877-1889, 2010.

F. Bovolo, “A Multilevel Parcel-Based Approach to Change Detection in Very
High Resolution Multitemporal Images,” IEEE Geoscience and Remote
Sensing Letters, Vol. 6, No. 1, pp. 33-37, January 2009.

V. J. D. Tsai, "A comparative study on shadow compensation of color aerial
images in invariant color models," IEEE Trans. Geosci. Remote Sens., vol. 44,
pp. 1661-1671, 2006.

L. Bruzzone and D. Fernandez-Prieto, "Automatic Analysis of the Difference
Image for Unsupervised Change detection," IEEE Trans. Geosci. Rem. Sens.,
vol. 38, pp. 1170-1182, 2000.
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Example: CD Architecture
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_ Example: Quantitative Results
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4. Change Detection in Very High Resolution
Multisensor Images
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Quickbird image before earthquake

Earthquake of Sichuan province, China, May, 2008
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Top-Down/Bottom-Up Approaches
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CD in Multisource Data: Example

D. Brunner, G. Lemoine, L. Bruzzone, “Earthquake damage assessment of
buildings using VHR optical and SAR imagery”, IEEE Transactions on Geoscience
Bulding and Remote Sensing, Vol. 48, No. 5, pp.2403-2420, 2010.
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Conclusion

v Analysis and exploitation of time series and multitemporal images is a very
important topic both from the methodological and the application
perspective.

v" Many methodological challenges are related to the properties of new satellite
data that require the development of a new generation of processing
techniques for the analysis of:

* VHR multispectral and SAR images.
e Hyperspectral images.
¢ Long time series (data mining).

v These properties open the possibility to develop also new applications that
exploit either the very high geometrical (e.g. analysis of single buildings) or
spectral (e.g. detection of subtle changes) resolution and the increased revisit
time (e.g. monitoring and surveillance application).
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Change Detection in Very High Resolution SAR Images
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ERS SAR images of a flood in the Cat-Tien National Park, Vietnam
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New Satellites with VHR SAR Sensors
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CD in VHR SAR images

v In multitemporal SAR VHR images we have many sources of backscattering
changes.

v' Often backscattering changes associated with different sources exhibit
characteristics similar to each other. They can be separated only by explicitly
modeling the EM behavior of complex objects.

v' To this end it is necessary to bridge the semantic gap between low level
features and semantic information:

¢ Modelling the interaction between the EM waves and the imaged objects;
e Extracting the different object components with proper detectors;

e Combining object components for identifying the objects and the possible changes in their
state.
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A. Ferro, D. Brunner, L. Bruzzone, “Automatic
Detection and Reconstruction of Building Radar
Footprints from Single VHR SAR Images”, IEEE
Trans. on Geoscience and Remote Sensing, 2012
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Change Detection in VHR SAR Images

v" Moving from object detection in single images to object change detection in
multitemporal images increases the complexity of the information extraction.

v In order to define an effective general approach to change detection for VHR
SAR images we have to:

e Decompose the general complex problem in simpler hierarchical problems.
¢ Exploit the intrinsic multiscale nature of objects present in VHR images.

* Model the specific properties of expected changes for extracting the semantic
meaning of backscattering changes.

* Exploit the available prior information on the considered scenario.
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Architecture for Building Change Detection
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on Image and Signal Processing for Remote Sensing, Edinburg, UK, September 2012.
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Architecture for Building Change Detection
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Architecture for Building Change Detection

v' Changes in VHR SAR images implies increase or
decrease of backscattering values.

v Changes in buildings (i.e., new/destroyed buildings)
implies simultaneous increase and decrease of o
backscattering. \

== Backscattering decrease
mm  Backscattering increase

3 hith ADVANCED TRAINING COURSE IN LAND REMOTE SENSING © Lorenzo Bruzzone

1-5 July 2013 | Harokopio University | Athens, Greece

33



HAROKOPIO UNIVERSITY

Example: UAquila Earthquake
section (1024x1024 pixels) of two spotlight (CSK®) images acquired before
(5th April 2009) and after (12t September 2009) the earthquake of LAquila (Italy, 6t April 2009).
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