

HAROKOPIO UNIVERSITY		Cesa	3
Contract Acknowldegments			
Boreal Ecosystems: Results from <u>18 years of coopera</u> SIBERIA-I and –II, GMES-Russia, S Information System, Baikal Monit EuRuCAS and 8 <u>ESA-projects</u> FEMINE, GMI BIOMASAR-I/-II, DRAGON-1/-2 ar Office. Tropical Ecosystems: FRA-SAR-2010 (DLR/BMBF, cooperation Str Mexico, Savannah Vegetation Str Mid-latitudes: ENVILAND-I/-II (DLR), Coop with the second street stree	tion in 9 EU- ibFORD, Irku toring, Mari ES Forest Mo nd the ESA L eration partr ucture in KN the Thuringi	<u>-Russian</u> projects: utsk Environm. e-Curie-FORCE, ZAPÁS, onitoring I/II, .and Cover Project ner GAF), GEO FCT NP ian Forest Agency.	
→ 4th ADVANCED TRAINING COURSE IN LAND REMOTE SENSING 1-5 July 2013 Harokopio University Athens, Greece			1.

SIBERIA: and Radar	SAI Into	≷ Imaging for Boreal Ecology erferometry Applications	
Methodo	logi	cal Objectives	
The analys	is m	ethods needed to be	
<u>automatic</u>	:	because of the large amount of data	
<u>adaptive</u>	:	because of changes in image properties	
<u>consistent</u>	:	no scene dependent assignment	
<u>validated</u>	:	confidence of the results	
			10

			Ma> Pr	imun ^{Jarization} vv нн нv нv н a нv vv a нv	Likeliho Accuracy 95.4 93.8 96.9 97.4 97.4	Dod Classifi карра 0.918 0.89 0.945 0.955 0.955
Maximum Likelihood VV & HV / 8 acq. dates	Water	Grassland	Cropland	Forest	Settlement	User accuracy
Water	97.88	1.217	0.27	0.22	0.85	89.35
Grassland	0.53	97.28	2.27	0.10	0.08	(75.37)
Cropland	1.24	1.503	95.99	0.64	16.82	97.72
Forest	0	0	1.15	98.92	0.085	orchards
Settlement	0.35	0	0.32	0.12	82.16	and alfalfa
Prod. Accuracy	97.88	97.28	95.99	98.92	82.16	97.34

• Classification of basic land cover classes is possible with very high accuracies when using at least four SAR acquisitions and two polarizations.

• Consistent multi-temporal coverage of ENVISAT ASAR APP not available for large areas in Central Europe

→ SENTINEL-1 will provide consistent coverage in Interferometric Wide Swath Mode

Classificatio reference pi	n results xel per cla	combined ass	approach -	– overall ad	ccuracy for	20 classes	s – 50
	Exclu- ding SAR	SAR – HV, VV, texture, HV-min	SAR – HV, VV	SAR – HV, texture, HV-min	SAR – HV	SAR – VV, texture	SAR – VV
SAR		80.2	77.9	73.3	71.9	64.3	65.2
LS 21.04.05	52.8	82.8	81.8	80.4	80.4	75.8	76.8
LS 10.07.05	68.3	82.4	82.7	83.6	82.2	80.1	80.6
LS 21.04. & 10.07.	77.9	83.7	83.7	84.0	83.8	82.9	82.5
opt	ical						

