

- PART 1: InSAR the basics
- Components of interferometric phase
- Error Budget for single Interferogram
- PART 2: InSAR "advanced" methods
- Time Series Methods
- Determining 3D displacements
- Correcting Atmospheric Noise

InSAR – how it works

• Actively illuminate ground with radar waves.

- Operates day and night, can see through clouds
- ERS, Envisat (1991): very stable orbits and pointing ⇒ InSAR

• Followed by ERS-2 (1995) and Envisat (2003) for ~ 20 year time series

Components of interferometric phase

 $\Delta \phi_{\text{int}} = \Delta \phi_{\text{geom}} + \Delta \phi_{\text{topo}} + \Delta \phi_{\text{atm}} + \Delta \phi_{\text{noise}} + \Delta \phi_{\text{def}}$

- Size of $\Delta \phi_{\text{atm}}$ (at sea level) scales with distance, but can be +/- 10 cm or more.
- Methods for dealing with $\Delta \phi_{\rm atm}$
 - Ignore (most common)
 - Quantify
 - Model based on other observations (e.g. GPS, meteorology...)
 - Increase SNR by stacking or time series analysis

Components of interferometric phase

 $\Delta \phi_{\text{int}} = \Delta \phi_{\text{geom}} + \Delta \phi_{\text{topo}} + \Delta \phi_{\text{atm}} + \Delta \phi_{\text{noise}} + \Delta \phi_{\text{def}}$

1. incoherence

- Changes in the ground cover cause a random phase shift for each pixel
- Large baselines
- 2. Unwrapping errrors
- Phase in interferograms is wrapped (each fringe is 2 π radians).
- Discontinuities or data gaps can cause phase unwrapping errors

Outline for Advanced Methods

- 1. Combining interferograms
 - Stacking
 - Time series
 - SBAS/Permanent Scatterers
 - Error budget for Time Series Methods
- 2. Determining 3D displacements/velocities
 - Direct inversion
 - Combination with GPS
- 3. Atmospheric Corrections
 - Linear/Smooth Velocity Assumption
 - MERIS/MODIS
 - GPS
 - Weather Models

SBAS: Short BAseline Subset

Example: Campi Flegrei caldera (Italy).

Modelled by an inflation rate of a magma chamber at a depth of 3.2 km with a volume change of $1.1 \times 10^6 \text{ m}^3/\text{yr}$ 30 ascending images => 180 interferograms

Max uplift of 2 cm/yr in Pozzuoli Harbour

(Trasatti et al, 2008; Casu et al, 2006)

Earthquakes

Current Capability

- Measure interseismic strain rates on suitable, targeted faults.
- Use these to constrain slip rate and hence assess future hazard.

What could be done?

- Routine measurement of strain across whole regions.
- Assessment of slip rates and relative hazard of multiple faults (including unidentified faults).

Why are we not doing this already?

- Data.
- Method Development.
- Manpower.

2. Interseismic Strain

Wang, Wright and Biggs., GRL 2009

<section-header><section-header><list-item><list-item><list-item>

