

🗃 HAROKOPIO UI	NIVERSITY		esa
Nomenclature and Radiometric Units			
		Term or quantity	Unit
QUANTITY	RADIOMETRIC	Energy content	
		radiant energy	joule (J)
FLUX	POWER (WATTS)	energy flow rate	J s⁻¹ or watt (W)
		energy fluence	J m ⁻²
FLUX/AREA	IRRADIANCE (WATTS/M ²)	energy fluence rate	W m ⁻²
		Photon content	
FLUX/SOLID ANGLE	RADIANT INTENSITY (WATTS/STR) RADIANCE (WATTS/M ² /STR)	number of photons (quanta)	dimensionless
		Avogadro's number of photons	mol
FLUX/AREA/SOLID		photon flow rate	s ⁻¹ or mol s ⁻¹
	(photon fluence	m ⁻² or mol m ⁻²
		photon fluence rate	m ⁻² s ⁻¹ or mol m ⁻² s ⁻¹
→ 4th ADVANCED TRAINING COU	RSE IN LAND REMOTE SENSING		

EXAMPLE ENTRYEGeneral 5D ([3+2]D) vector radiative transfer equation
$$d\vec{1}(\vec{r},\vec{\Omega}) = -\beta_{a}^{ext}(\vec{r},\vec{\Omega}) \ \vec{1}(\vec{r},\vec{\Omega}) dS - \vec{\beta}_{s}(\vec{r},\vec{\Omega}) \cdot \vec{1}(\vec{r},\vec{\Omega}) dS +$$
 $d\vec{1}(\vec{r},\vec{\Omega}) = -\beta_{a}^{ext}(\vec{r},\vec{\Omega}) \ \vec{1}(\vec{r},\vec{\Omega}) dS + \beta_{s}(\vec{r},\vec{\Omega}) \cdot \vec{1}(\vec{r},\vec{\Omega}) dS +$ $+\beta_{a}^{int}(\vec{r},\vec{\Omega}) \ \vec{J}_{a}(\vec{r},\vec{\Omega}) dS + \beta_{s}(\vec{r},\vec{\Omega}) \ \vec{J}_{s}(\vec{r},\vec{\Omega}) dS$ $\vec{J}_{s}(\vec{r},\vec{\Omega}) = \frac{1}{4\pi} \int_{4\pi} d\vec{\Omega}' \left[\vec{\Psi}_{s}(\vec{r},\vec{\Omega},\vec{\Omega}') \cdot \vec{1}(\vec{r},\vec{\Omega}') \right]$ $\vec{\beta}_{s}(\vec{r},\vec{\Omega}) = \frac{1}{4\pi} \int_{4\pi} d\vec{\Omega}' \ \vec{\Psi}_{s}(\vec{r},\vec{\Omega},\vec{\Omega}')$ $\vec{\mu}_{s}(\vec{r},\vec{\Omega}) = \frac{1}{4\pi} \int_{4\pi} d\vec{\Omega}' \ \vec{\Psi}_{s}(\vec{r},\vec{\Omega},\vec{\Omega}')$ $\vec{\mu}_{s}(t) = \frac{1}{4\pi} \int_{4\pi} d\vec{\Omega}' \ \vec{\Psi}_{s}(\vec{r},\vec{\Omega},\vec{\Omega}')$

EXAMPLES INVERSE

$$\begin{aligned}
\underbrace{\partial}{\partial s} &= \left(\vec{\Omega} \cdot \vec{\nabla} \right) \\
\\
\frac{\partial}{\partial s} &= \left(\vec{\Omega} \cdot \vec{\nabla} \right) \\
\\
\frac{1}{\beta_{e}(\vec{r}, \vec{\Omega})} \quad \frac{\partial}{\partial s} \vec{\Gamma}(\vec{r}, \vec{\Omega}) &= -\vec{\Gamma}(\vec{r}, \vec{\Omega}) + \\
\\
&+ \frac{\omega_{0}(\vec{r}, \vec{\Omega})}{4\pi} \int_{4\pi} d\vec{\Omega} \cdot \left[\vec{P}(\vec{r}, \vec{\Omega}, \vec{\Omega}') \cdot \vec{\Gamma}(\vec{r}, \vec{\Omega}') \right] + \\
&+ \vec{J}(\vec{r}, \vec{\Omega}) \\
\\
d\tau &= -\beta_{e}(\vec{r}, \vec{\Omega}) dz \\
d\tau &= -\beta_{e}(\vec{r}, \vec{\Omega}) \cos \vartheta ds
\end{aligned}$$

$$\begin{aligned}
ds &= \frac{dz}{\cos \vartheta} \\
\end{aligned}$$

$$$$

