→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

Investigation of the capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

Hong Zhang Lei Xie Chao Wang Jiehong Chen

Center for Earth Observation and Digital Earth, CAS E-mail: hzhong@ceode.ac.cn

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

452

1 Introduction

Introduction

Kecon

2 Reconstruction Method

3Experimental methods and results

1.0002002000

Cesa-

1 Introduction

Several limitations of Full Polarimetric(FP) system:

- 1. System complexity;
- 2. Data Downloading rate;
- 3. Power consumption;
- 4. Size of the processed swath;

Compact Polarimetry(CP) makes it possible to overcome the bottle neck of a FP system, and shows the potential in target detection, crop classification, forestry application, and environment monitoring.

1 Introduction

Three conventional modes of CP system

π/4	DCP	CTLR
 Proposed by Souyris et al. Transmit: 45° linear Receive: H, V linear 	 Proposed by Stacy and Preiss Transmit: left/right circular Receive: left, right circular 	 Proposed by Raney Transmit: left/right circular Receive: H, V linear

Two main ideas of CP data processing

Reconstruction

- Reconstruction methods: Souyris(2005),Nord(2009), Lavalle(2009),Collins(2012)
- Application: target detection, forest height retrieval, target decomposition

Without Reconstruction

- m- δ decomposition(2007)
- target decomposition(2010,2012)
- forest height retrieval(2008, 2011)
- target detection(2012)
- surface parameter estimation(2012)

1 Introduction

Introduction

Kecon

2 Reconstruction Method

3Experimental methods and results

1.0002002000

2 Reconstruction Method

The scattering vectors and PolInSAR covariance matrices of three conventional CP modes are expressed as:

 $k_{\pi/4} = [k_{H} \ k_{V}]^{T} = \frac{1}{\sqrt{2}} [S_{hh} + S_{hv} \ S_{vv} + S_{hv}]^{T}$ $k_{cp} = [k_{cp1} \ k_{cp2}]^{T}$ $k_{cp} = [k_{cp1} \ k_{cp2}]^{T}$ $k_{cp} = [k_{cp1} \ k_{cp2}]^{T}$ $J_{4} = \langle k_{cp} k_{cp}^{H} \rangle = \begin{bmatrix} J_{11} \ J_{12} \\ J_{21} \ J_{22} \end{bmatrix} \xrightarrow{\text{Reconstruction}} C_{6}$ $k_{CTLR} = [k_{H} \ k_{V}]^{T} = \frac{1}{\sqrt{2}} [S_{hh} - iS_{hv} \ S_{hv} - iS_{vv}]^{T}$

Take the reflection symmetry in $\pi/4$ mode for example, the matrix J_{12} is looked as observed parameters(4 equations), and matrix C_{12} (5 unknowns as listed below) is to be solved:

$$H = S_{hh_i} S_{hh_j}^*, X = S_{hv_i} S_{hv_j}^*, V = S_{vv_i} S_{vv_j}^*, M = S_{vv_i} S_{hh_j}^*, N = S_{hh_i} S_{vv_j}^*$$
$$J_{12} = \begin{bmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} H + X & N + X \\ M + X & V + X \end{bmatrix} \xrightarrow{\text{Reconstruction}} C_{12} = \begin{bmatrix} H & 0 & N \\ 0 & 2X & 0 \\ M & 0 & V \end{bmatrix}$$

1 Introduction

Introduction

Kecon

2 Reconstruction Method

3Experimental methods and results

1.0002002000

→ POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

3Experimental methods

The conventional or refined methods (Three-stage, ESPRIT, Music and Capon) will be performed on both reconstructed F-PolInSAR covariance matrix C_6 and C-PolInSAR covariance matrix J_4 .

1. Three-stage

Reconstruction

- a. Obtain matrix C_6 ;
- b. Estimate a series of optimum coherence via Gomez-Dans algorithm;
- c. The medium filtering is applied*;
- d. Fitting a straight line and identify two intersection points with unitary circle; then select the volume decorrelation phase;
- e. Retrieve tree height from look-up table.

Without Reconstruction

- a. Get the initial estimation of volume decorrelation and ground phase via the coherence optimization;
- b. Volume decorrelation estimation is updated with coherence boundary extraction method;
- c. Retrieve tree height from look-up table.

* Targets in forest may not always hold the symmetry assumption, this uncertainty will bias the coherence in some scattering mechanism vectors, i.e., the interferometric coherence may exceed 1; the medium filtering here is to suppress coherence jumps.

3Experimental methods

2. Hybrid algorithm

Reconstruction To obtain the optimum scattering mechanisms: $w_{opt1} = [w_{11}, w_{12}, w_{13}]^T$ $w_{opt2} = [w_{21}, w_{22}, w_{23}]^T$ Then the matrix C_{11} , C_{12} , C_{22} can be refined as: $w_{dopt1} = \begin{bmatrix} w_{11} \\ w_{12} \\ w_{13} \end{bmatrix} \begin{bmatrix} w_{dopt2} = \begin{bmatrix} w_{21} \\ w_{22} \\ w_{23} \end{bmatrix}$ $C_{11}^{'} = w_{dopt1}C_{11}w_{dopt1}^{H} \quad C_{12}^{'} = w_{dopt1}C_{12}w_{dopt2}^{H}$ $C_{22}^{'} = w_{dopt2}C_{22}w_{dopt2}^{H}$

With the refined matrix C_6 , the ESPRIT algorithm is used to estimate volume decorrelation phase and three-stage algorithm to obtain ground phase.

Without Reconstruction

The unconstrained Lagrange multipliers are used to estimate optimum scattering mechanisms, and the scattering vectors are refined:

$$w_{opt1} = [w_{11}, w_{12}]^T \quad w_{opt2} = [w_{21}, w_{22}]^T$$
$$k_{cp}^1 = [w_{11} \Box k_{cp1}^1 \ w_{12} \Box k_{cp2}^1]^T$$
$$k_{cp}^2 = [w_{21} \Box k_{cp1}^2 \ w_{12} \Box k_{cp2}^2]^T$$

With the refined matrix $J_{4,}$ ESPRIT algorithm is applied and estimate volume decorrelation phase and ground phase.

Experimental methods

Experiment 1

Experimental data

Frequency: X-band

Resolution: 1 meter

Incident Angle: 50°

Image Size: 400×1000

Site: Hainan Province, China

The Pauli decomposition result of the test area

Reconstruction method: rotation symmetry in $\pi/4$ mode

Experimental Methods: Three-stage, Hybrid and refined ESPRIT algorithms

* It is the Chinese first dual-antenna airborne polarimetric data and used in compact PolInSAR for the first time.

POLINSAR 2013
 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Experiment 1

Fig. 2. The experimental results (a) three-stage algorithm on matrix C_6 ; (b) hybird algorithm on matrix C_6 ; (c) three-stage algorithm matrix J_4 ; (d) refine ESPRIT algorithm on matrix J_4

Experiment 1

Data	Method	Mean(m)	Std(m)
C_6	Three-stage	11.65	4.39
	Hybird	7.95	4.04
J_4	Three-stage	14.36	4.74
	ESPRIT	9.31	2.84
Insit		14.59	3.72

* Tree height from 5 \sim 25 m is counted;

Results of three-stage are much more consistent with the ground truth;

Results of hybrid and refined ESPRIT are only half of ground truth;

Results of matrix J_4 are better than that of matrix $C_{6:}$

Experiment 2

Table 2 The	simulation pa	arameters of experimental	data
Platform Altitude	3000m	Slant Range Resolution	1.06m
Incident Angle	45°	Azimuth Ground Slope	2.0%
Horizontal Baseline	10.0m	Range Ground Slope	1.0%
Vertical Baseline	1.0m	Tree Height	10.0m
Centre Frequency	1.30GHz	Forest Stand Density	300 stems/Ha
Azimuth Resolution	1.5m	Forest Stand Circular Area	0.283Ha

Experimental methods: Music and Capon

Experiment 2

	Table 3 Results of experiment 2				
Data	Method	Mean(m)	Std(m)		
	Music	4.42	1.69		
C_6	Capon	5.19	2.5		
7	Music	3.43	0.88		
J_4	Capon	4.03	1.24		
Fully mod	Music	4.58	1.09		
<i>гину то</i> а	Capon	3.81	1.23		

*results of fully polarimetric mode are used as reference

Results of matrix C_6 and J_4 are similar with that of FP mode;

From the perspective of standard deviation, results of J_4 is much more stable than that of matrix C_6 ;

1 Introduction

Introduction

Kecon

2 Reconstruction Method

DExperim

3Experimental methods and results

4Conslusion

POLINSAR 2013
 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

4Conslusion

+Consiusion

In this paper, conventional and refined methods are applied to both reconstructed F-PolInSAR covariance matrix C_6 and C-PolInSAR covariance matrix J_4 , X-band airborne data and L-band simulated data are used in our experiments, experimental results show:

1. Compact Polarimetry shows potential in forest height estimation;

2. Results of matrix J_4 are better than that of matrix C_6 ;

3. The reconstruction procedure of pseudo F-PolInSAR matrix influences the estimation results;

Thank you!

→ POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency