

→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

A Modified Wishart Distance Measure and Its Application to PolSAR Change Detection

Meng Liu, Hong Zhang, Chao Wang

E-mail: mengliu@ceode.ac.cn

2013-01-31

- 1 Introduction
- 2 Proposed Method
- **Experimental Results**
- 4 Conclusions

1

Introduction

2

Proposed Method

- 3
- **Experimental Results**
- 4

Conclusions

➤ 1.1 Background

Sensor	Area	Polariz ation	Gray Statistics (real, imaginary)		
			Min	Max	Mean
ESAR	Oberpfaffenho fen ,Germany	VV	(-899.700623, -1821.804321)	(1189.208130, 725.402710)	(0.008410, -0.006025)
COSMO- SkyMed	Suzhou,China	НН	(-28844, -23923)	(32766, 28376)	(0.014537, 0.001744)
Radarsat-	Suzhou,China	HV	(-32768, -32768)	(32767, 32767)	(5.349097, -2.752530)
TerraSA R-X	Suzhou,China	НН	0 (intensity)	32767 (intensity)	152.247600 (intensity)

For the whole SAR image, compared with the gray range, the gray mean of real and imaginary components is considered as 0. Therefore, the scattering vector follows a zero mean complex multivariate Gaussian distribution.

➤ 1.1 Background

- ➤ A sliding window will be employed for most of SAR application (Classification, Change Detection).
- In the small sample size, the scattering vectors will have a long correlation length, and it is impossible to make their sum into 0 through mutual offset of positive and negative.
- ➤ Therefore, the 0 mean assumption of scattering vectors in the sliding window should be reconsidered.

> 1.2 Objective

- When the PolSAR scattering vector is an independent nonzero-mean complex circular Gaussian random vector, their coherency matrix will follow a noncentral complex Wishart distribution.
- ➤ In this paper, based on the noncentral complex Wishart distribution, we propose a modified Wishart distance measure and apply it to PolSAR change detection.

2

Proposed Method

3

Experimental Results

4

Conclusions

> 2.1 Noncentral Wishart distribution

> A complex multivariate Gaussian distribution is given by

$$f(k) = \frac{1}{\pi^{p} |\Sigma|} etr \left\{ -\Sigma^{-1} (k - \mu) (k - \mu)^{H} \right\}$$

and the estimators of the mean and covariance matrix are

$$\overline{\mu} = \sum_{l=1}^{L} k_l, \overline{\Sigma} = \frac{1}{L} \sum_{l=1}^{L} \left(k_l - \overline{\mu} \right) \left(k_l - \overline{\mu} \right)^H$$

The p×p Hermitian matrix $W = \sum_{i=1}^{L} k_i k_i^H$ will follow a complex Wishart distribution.

$$T = \frac{W}{L}$$
: polarimetric coherecy matrix

> 2.1 Noncentral Wishart distribution

Matrix W can be rewritten as

$$W = KK^H$$
 with $K = [k_1 \ k_2 \cdots k_L]$

➤ Note that A is a complex multivariate Gaussian matrix

$$A = K^H \in CN_{L \times p} (M, I_L \otimes \Sigma)$$
 where $M = E\{A\}$

> Therefore, the PDF W is given by

Jacobian determinant

$$\begin{split} p_{W}\left(W;L,M,\Sigma\right) &= J\left(K^{H} \to W\right) p_{K^{H}}\left(K^{H};M,\Sigma\right) \\ &= \frac{\left|W\right|^{L-p}}{\Gamma_{p}\left(N\right)\left|\Sigma\right|^{L}} etr\left[-\Sigma^{-1}\left(A-M\right)^{H}\left(A-M\right)\right] \end{split}$$

> 2.1 Noncentral Wishart distribution

 \triangleright With $\Omega = \Sigma^{-1}MM^H$, the PDF of W can be recast in the form

$$p_{W}\left(W;L,M,\Sigma\right) = \frac{\left|W\right|^{L-p}}{\Gamma_{p}\left(N\right)\left|\Sigma\right|^{L}} etr\left(-\Sigma^{-1}W\right) etr\left(-\Omega\right){}_{0}F_{1}\left(L;\Omega\Sigma^{-1}W\right)$$

$$W \in CW_{p \times p}\left(L,\Omega,\Sigma\right)$$

- \triangleright When M = 0, W is the (central) Wishart distribution.
- \triangleright When M = 0, W is the noncentral Wishart (NW) distribution.

Hypothesis Test

$$\begin{cases} H_0: \mu_X = \mu_Y \text{ and } \Sigma_X = \Sigma_Y \\ H_1: \mu_X \neq \mu_Y \text{ or } \Sigma_X \neq \Sigma_Y \end{cases}$$

Generalized Likelihood Ratio Test

$$D = -\ln Q$$

$$H_0: \mu_X = \mu_Y$$
 and $\Sigma_X = \Sigma_Y$

$$H_0^{(1)}:\Sigma_X=\Sigma_Y$$

$$Q_{1} = \frac{\max_{\Sigma} L(W_{X}, W_{Y})}{\max_{\Sigma_{Y}, \Sigma_{Y}} L(W_{X}, W_{Y})}$$

$$H_0^{(2)}: \mu_X = \mu_Y$$
, given $\Sigma_X = \Sigma_Y$

$$Q_2 = \frac{\max_{u} L(\Sigma)}{\max_{u^{(X)}, u^{(Y)}} L(\Sigma)}$$

$$Q = Q_1 Q_2$$

$$H_0^{(1)}: \Sigma_X = \Sigma_Y$$

$$Q_1 = \frac{\max_{\Sigma} L(W_X, W_Y)}{\max_{\Sigma_X, \Sigma_Y} L(W_X, W_Y)}$$

$$\begin{aligned} &\max_{\Sigma_{X},\Sigma_{Y}}L\left(W_{X},W_{Y}\right) & \overline{\Sigma}_{X} = \sum_{i=1}^{L_{X}}\left(k_{l}^{(X)}-\overline{\mu}^{(X)}\right)\left(k_{l}-\overline{\mu}^{(X)}\right)^{H} / L_{X} \\ &= \frac{\left|W_{X}\right|^{L_{X}-p}}{\Gamma_{p}\left(L_{X}\right)\left|\Sigma_{X}\right|^{L_{X}}}\frac{\left|W_{Y}\right|^{L_{Y}-p}}{\Gamma_{p}\left(L_{Y}\right)\left|\Sigma_{Y}\right|^{L_{Y}}}, & \overline{\Sigma}_{Y} = \sum_{i=1}^{L_{Y}}\left(k_{l}^{(Y)}-\overline{\mu}^{(Y)}\right)\left(k_{l}-\overline{\mu}^{(Y)}\right)^{H} / L_{Y} \\ &\max_{\Sigma_{X},\Sigma_{Y}}L\left(W_{X},W_{Y}\right) \\ &= \frac{\left|W_{X}\right|^{L_{X}-p}}{\Gamma_{p}\left(L_{X}\right)\left|\Sigma\right|^{L_{X}}}\frac{\left|W_{Y}\right|^{L_{Y}-p}}{\Gamma_{p}\left(L_{Y}\right)\left|\Sigma\right|^{L_{Y}}}, & \overline{\Sigma} = \left(L_{X}\overline{\Sigma}_{X}+L_{Y}\overline{\Sigma}_{Y}\right) / \left(L_{X}+L_{Y}\right) \end{aligned}$$

$$Q_{1} = \left| \overline{\Sigma}_{X} \right|^{L_{X}} \left| \overline{\Sigma}_{Y} \right|^{L_{Y}} \left| \overline{\Sigma} \right|^{L_{X} + L_{Y}}$$

$$H_0^{(2)}: \mu_X = \mu_Y$$
, given $\Sigma_X = \Sigma_Y$

$$Q_2 = \frac{\max_{u} L(\Sigma)}{\max_{u^{(X)}, u^{(Y)}} L(\Sigma)}$$

$$\max_{u^{(X)},u^{(Y)}} L(\Sigma) = \pi^{-Lp} \left| \Sigma_{\Omega} \right|^{-L},$$

$$\overline{\Sigma}_{\Omega} = \frac{1}{L_X + L_Y} \sum_{l=1}^{L_X} \left(k_l^{(X)} - u^{(X)} \right) \left(k_l^{(X)} - u^{(X)} \right)^H + \frac{1}{L_Y + L_Y} \sum_{l=1}^{L_Y} \left(k_l^{(Y)} - u^{(Y)} \right) \left(k_l^{(Y)} - u^{(Y)} \right)^H$$

Numerator

$$\max_{u} L(\Sigma) = \pi^{-Lp} \left| \Sigma_{\omega} \right|^{-L},$$

$$\overline{\Sigma}_{\omega} = \frac{1}{L_X + L_Y} \sum_{l=1}^{L_X} \left(k_l^{(X)} - u \right) \left(k_l^{(X)} - u \right)^H + \frac{1}{L_X + L_Y} \sum_{l=1}^{L_Y} \left(k_l^{(Y)} - u \right) \left(k_l^{(Y)} - u \right)^H$$

$$Q_2 = \frac{\left|\overline{\Sigma}_{\Omega}\right|^L}{\left|\overline{\Sigma}_{\omega}\right|^L}$$

$$Q_{non-central} = rac{\left|\overline{\Sigma}_X
ight|^{L_X}\left|\overline{\Sigma}_Y
ight|^{L_Y}}{\left|\overline{\Sigma}_\omega
ight|^{L_X + L_Y}}$$

$$H_0: \mu_X = \mu_Y$$

$$\Sigma_X = \Sigma_Y$$

$$Q_{non-central} = \frac{\left|\overline{\Sigma}_X\right|^{L_X} \left|\overline{\Sigma}_Y\right|^{L_Y}}{\left|\overline{\Sigma}_{\omega}\right|^{L_X + L_Y}}$$

$$Q'_{non-central} = \frac{\left|\overline{\Sigma}_{X}\right|^{L_{X}}\left|\overline{\Sigma}_{Y}\right|^{L_{Y}}}{\left|\overline{\Sigma}\right|^{L_{X}+L_{Y}}}$$

$$Q'_{non-central} = \frac{\left|W_{X}\right|^{L_{X}}\left|W_{Y}\right|^{L_{Y}}}{\left|W_{X}+W_{Y}\right|^{L_{X}+L_{Y}}} \frac{\left(L_{X}+L_{Y}\right)^{p\left(L_{X}+L_{Y}\right)}}{\left(L_{X}-L_{Y}\right)^{p\left(L_{X}+L_{Y}\right)}}$$

Two special cases of the proposed ratio

Distribution	Hypothesis	Distance
Noncentral Wishart	$\mu_X = \mu_Y$ $\Sigma_X = \Sigma_Y$	$D_{non-central} = 2 \ln \left \overline{\Sigma}_{\omega} \right - \ln \left \overline{\Sigma}_{X} \right - \ln \left \overline{\Sigma}_{Y} \right $
Noncentral Wishart	$\Sigma_{_{X}}=\Sigma_{_{Y}}$	$D'_{non-central} = 2 \ln \left \overline{\Sigma} \right - \ln \left \overline{\Sigma}_X \right - \ln \left \overline{\Sigma}_Y \right $
Central Wishart	$\Sigma_{_{X}}=\Sigma_{_{Y}}$	$D_{central} = 2 \ln W_X + W_Y - \ln W_X - \ln W_Y - 2p \ln 2$

The comparison of three Wishart Distances

Experimental Results

Conclusions

> 3.1 Experimental data

Sensor: RADARSAT-2

Time 1: 2009-04-09

Resolution: $10m \times 8m$

Time 2: 2010-06-15

➤ 3.2 Experimental results

> 3.2 Experimental results

- ➤ All the changed areas are detected successfully by the three distances.
- ➤ Unfortunately, the proposed modified Wishart distance has an advantage over the central Wishart distance only in some small changed areas.
- The difference of covariance matrix may be the main reason for SAR change detection.

> 3.2 Experimental results

Distance	Mean	Standard deviation	The equivalent number of looks
$D_{non-central}$	0.605321	0.492301	1.512
$D^{\prime}_{non-central}$	0.415514	0.472729	0.773
$D_{\it central}$	0.415013	0.474311	0.765

The proposed distance gives the maximum mean and ENL, which will contribute to the extraction of changed areas.

Conclusions

1

Compared with the Wishart distance, the proposed non central Wishart distance will give a higher quality difference map for change detecton.

2

It seems that all changed areas can be detected by each distance. Therefore, further comparison, such as ROC curve and detection rate, should be added in the final version.

3

Some other related applications, such as classification, and segmentation, can be applied by replacing central Wishart distance with the proposed distance.

Thank you!

