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Requirements for Coherent Scattering from a Random Volume

Two Environmental Examples:
* Mangrove Forests
* Arctic Frozen Lakes

Conceptual and Mathematical Description of Virtual Bragg
Gratings

* Dihedral Bragg Grating for Co-Pol

* Trihedral Bragg Grating for Cross-Pol

Impact of approach on Polarimetric Decompositions




Requirements for a Coherent Response

1) Forward Scattering from Randomly Distributed Scatterers
* Mie scattering regime satisfies requirement for Forward
Scattering

2) A Mirror surface that defines the geometry
* Coherent Reflection can be turned On and Off by
presence of the Mirror




Examples in Nature

Two examples: Both characterized by random distribution of forward
scatterers over a natural mirror

Mangroves (Everglades National Park)

Frozen Tundra Lakes (Pt. Barrow, Alaska)




Mangrove Characteristics
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INSAR used to measure water level in Florida Wetlands
*  Works for L, C, and X-bands




Mangrove Characteristics

Random Vegetation over a water “mirror”

Remarkably low temporal decorrelation for vegetation
* Even X-band has coherence lasting months

Coherence seen for both HH and HV
* Require an explanation for coherent cross-pol

Polarimetric decomposition does not indicate Double
Bounce (the presumed scattering mechanism)




Frozen Tundra Lakes Characteristics

Grounded pond ice is dark

Floating pond ice is bright

* Used to characterize pond
bathymetry




Frozen Tundra Lakes Characteristics

Random bubbles over an ice/water interface “mirror”

Single-pass INSAR Coherence of pond ice exceeds that
of land

* Response shown to come from bottom of ice

Backscatter modulation seen for both HH and HV
* Require an explanation for coherent cross-pol

Polarimetric decomposition does not indicate Double
Bounce (the presumed scattering mechanism)




Coherence from Randomly Distributed Scatterers

. Individual Scatterer
A “perfect” Mirror




Coherence from Randomly Distributed Scatterers
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*  Requirement of Forward Scattering
*  Scattering details depend on case, but not essential to concept




Coherence from Randomly Distributed Scatterers

*  Select for that scattering event in which photon undergoes reflection at
mirror and returns to source
* Angle of Incidence = Angle of Reflection




Coherence from Randomly Distributed Scatterers
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Consider a large number of randomly distributed scatterers over the mirror




Coherence from Randomly Distributed Scatterers

A Virtual Dihedral exists within the random distribution of scatterers, for
which there is coherent backscatter

All microwaves scattering from this diheral are coherent: they have same
path length and thus the same phase




Coherence from Randomly Distributed Scatterers
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Consider a Set of Virtual Dihedrals existing within the random
distribution of scatterers




Coherence from Randomly Distributed Scatterers

* If the spacing (d) between Dihedrals satisfies the Bragg Equation,

2d sin (92 =)

there will be coherent backscatter from a virtual Dihedral Bragg Grating

* Spacing, d, equals 23 cm for L-band at 30° incidence




Coherence from Randomly Distributed Scatterers

Electric field scatterer, phase lim: -3.14

Plausibility of Dihedral Bragg Gratings is confirmed with Matlab model
Introduce random volume of forward scatters over a reflective plane
Constrain interactions to one scattering and one reflection
Select for backscatter with a single phase
Result is set of dihedrals satisfying the Bragg Equation




Wave Propagation within the Random Volume

Wave propagation associated with one such Dihedral Bragg grating can be

expressed as:
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Dihedral Bragg Scattering

* We can think of microwaves as “finding the coherent scattering structures”
within the random distribution

* Analogous to Bragg scattering from the ocean surface, where microwaves
backscatter from that component of the wave spectrum that satisfies the Bragg
equation:

Opq = Sk [GEP(0)] |W(2kn) + W(~2kn)|

—

where W(k) is the Fourier transform of the wave spectrum,
and QEH — 2k sin(6) is the Bragg wavenumber




Dihedral Bragg Scattering
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For total return, must account for all such Bragg gratings




Computing the Backscatter Intensity

The complex amplitude associated with one such dihedral Bragg grating is

A(O)eikm

Summing over a total of N+1 such gratings yields a total amplitude given by:

N
Ap = Z A(Xi)eiQk(?"g—l—sin 0X;)
i=0

Where @ is the incidence angle and X; is the distance along the ground, which

ranges from O to d (the grating spacing).

e From the Bragg formula, the phase, 2k sin @ X;, ranges from O to 2m.




Computing the Backscatter Intensity

Skipping a step or two, the backscatter intensity from the resolution cell can be
written as:
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where A;; = 2ksin0(X; — X ;) Assuming random values for A; and A;, we see
that the sum of cosines tends to zero. Thus the total intensity is simply the
incoherent sum of intensities from all the virtual Bragg gratings. Normalizing for
area, the Normalized Radar Cross Section becomes:
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Polarimetric Decomposition

Most journal articles allude to an unspecified “Double Bounce” in explaining:
 the interferometry present in Mangroves
 the return from frozen lakes with liquid water beneath the ice

Yet, decompositions (e.g. Pauli, Van Zyl. And Yamaguchi) fail to show a strong
Double Bounce component , dominated by the T22 coherency term
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Pauli decompositions ( ) of mangroves and yellow
Ecotone (left) and frozen lakes (right)




Polarimetric Characterization of Double Bounce

Assume that the individual scatterers behave as Hertzian Dipoles
(Al-Kahachi, N. and Papathanassiou, K., 2012)

The backscatter phases are
opposite for Horizontal
Polarization

The backscatter phases are the
same for Vertical Polarization

Virtual Dihedral “Classic” Dihedral




Polarimetric Characterization of Double Bounce

While Double Bounce for the “Classic” Dihedral is characterized as:

HH - VV

The Double Bounce for the Virtual Dihedral is characterized as:

HH + VV

Thus, Virtual Dihedrals look like Surface Scattering




Polarimetric Characterization of Double Bounce

C-band Polarimetry shows that no phase shift exists between HH and VV

HH (same as VV) HH / VV Phase Difference




Coherent Cross-Pol

Cross-Pol Coherence exists in both environmental examples

HV Interferogram in Mangrove HV Signal in Frozen Lakes




Mechanism for Coherent Cross-Pol

Cross-Pol mechanism exhibits high coherence and very
strong backscatter

Effect is turned on/off by the presence of a mirror below
random volume of scatterers

Any explanation must yield a coherent response and must
rotate the polarization




Mechanism for Coherent Cross-Pol

Effect can be explained by a Trihedral Bragg Grating:
Microwaves scatter from diffuse targets twice and from
the bottom mirror once

* Afixed path length assures the coherence

* Scattering from Hertzian Diploes rotates the
polarization

Effect is completely analogous to the Dihedral Bragg case




Coherent Rotation of Polarization

Orientation of Backscattered Field Relative to Incident Field
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Unlike a metallic trihedral, the Hertzian dipoles of the distributed scatterers
serve to rotate the electric field; introducing a coherent cross-pol term




Wave Propagation within the Random Volume
Wave propagation associated with one such trihedral Bragg grating can be

expressed as:
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Summary and Conclusions

A new scattering mechanism for a random volume of scatterers over
a “mirror” has been introduced

Like surface scattering from the ocean surface, it can be characterized
as a form of Bragg Scattering

Co-pol backscatter can be viewed as double bounce from a
Dihedral Bragg Grating

*  Cross-pol backscatter can be viewed as triple bounce from a
Trihedral Bragg Grating

The coherent response dominates over the millions of possible
incoherent responses (due to the N? dependence)




Summary and Conclusions

Virtual Dihedrals have a phase change that is inconsistent with the
standard decomposition for Double Bounce (HH-VV)

Two real-world environmental examples have been chosen: Ice
bubbles over an ice/water interface and mangrove trees over water

The new model serves to explain:
Strong Co-Pol and Cross —Pol Backscatter responses
Interferometric Coherence (with low temporal decorrelation)
Anomalous decomposition for the assumed Double Bounce
behavior
Coherence in the HV signal which is typically seen as incoherent
Volume Scattering
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