ANALYSIS OF A NEOS CANYON IN AN INSAR IMAGE OF A **URBAN AREA** AT KA-BAND

Phd student: Azza Mokadem

Supervisors:

Laetitia Thirion-Lefevre SUPELEC / E3S-EA4454 / SONDRA, France Elise Colin-Koeniguer

Images acquired by Jean-François Nouvel

ONERA/DEMR/RIM, France

Introduction

- > Main idea:
 - NLOS target can be detected via multipath
- > Problematic:

Scene under study: two buildings of 14 m height are seperated by a distance of 33 m. Three trihedral corners and a truck (illustrated in red) are located in front of the second building

Corresponding radiometric image acquired in Ka band

> Goal:

- * Long term:
 - ✓ To study the cases where a NLOS target can be detected
- Short term:
 - ✓ To understand the mechanisms happening inside a urban area in the case of monostatic SAR in far field

> Approach:

- To study simple configurations (the urban canyon) via geometric tools with strong assumptions
- To provide an automatic analysis of urban areas in SAR images

Plan

- > Presentation of the urban canyon
- Presentation of the developed geometric codes for a canyon with the presence of point/extended target
- > Interpretation of a radiometric image of a urban area
- ➤ Interpretation of an interferometric image of a urban area
- Conclusions and perspectives

Presentation of the urban canyon

> Choice of the urban canyon:

To understand the mechanisms within a simple configuration before moving to more complex areas

Urban canyon:

Free space located between two PEC vertical plates

> Main approximations:

- Roughness effects, diffraction, antenna pattern are neglected
- Far field

Canyon configuration:

- h_1, h_2, L
- **.** θ

Urban canyon v1, v2, v3

- Developed geometric codes:
 - Urban canyon v1
 - □ Identification of the NLOS areas illuminated by specular reflection mechanisms
 - Urban canyon v2
 - Detection of point targets inside the canyon
 - Urban canyon v3
 - Detection of extended targets inside the canyon
- **Results of geometric codes:**
 - □ To predict the radar range profile for any canyon (number of peaks, positions, corresponding mechanisms)

Examples of a range profile for a canyon with a parallelepiped target using Urban canyon v3

Logigramm for Urban canyon v3

On the use of Urban canyon v3 to interpret a radiometric/interferometric image-1-

Description of the scene under study:

Targets:

- ❖ 3 corners reflectors
- ❖ A truck

Radar parameters:

- **❖** Θ=60
- **❖** VV polarization
- ❖ Frequency=35 GHz

On the use of Urban canyon v3 to interpret a radiometric/interferometric image-2-

-9.5

> Interpretation of the radiometric image:

End of shadow area

Top of wall 2

Dihedral effect due to a change of material of wall 2

Dihedral effect due to the bottom of wall 2

Targets responses

Features on the roof

-7.5 -8 -8.5 -9

→ Agreement between the results of the geometric code and the position of the scatterers responses in the image

On the use of Urban canyon v3 to interpret a radiometric/interferometric image-3-

➤ Interpretation of the interferometric image:

On the use of Urban canyon v3 to interpret a radiometric/interferometric image-4-

Backscattering and reflection mechanisms inside the canyon

zones	Existing mechanisms	Dominant mechanism	σ_{gr} , σ_{rf} , $\mathrm{Rvv}_{\mathrm{c}}$, $\mathrm{Rvv}_{\mathrm{m}}$ (dB)
1	GB	GB	$\sigma_{ m gr}$
2	RB+GB	GB	$\sigma_{\rm gr} > \sigma_{\rm rf}$
3	RB+GB+RC	RB	$\sigma_{rf} > \sigma_{gr} + Rvv_c$
4	RB+GB+RM	GB	$\sigma_{rf} > \sigma_{gr} + Rvv_m$
5	RB	RB	$\sigma_{ m rf}$

GB: Ground backscattering mechanism ($\sigma_{or} \sim -19$ dB)

RB: Roof backscattering mechanism ($\sigma_{rf} \sim -22 dB$)

RC: Reflection on the concrete part of the wall (Rvv_c \sim -21dB)

RM: Reflection on the metallic part of the wall (Rvv_m~ 0 dB)

What about polarimetry?

- Expected to help the understanding of such complex environment
- Expected to differentiate the different target responses in the canyon

Conclusions and perspectives

Conclusions:

- Analyze the different scatterers responses in a radiometric / interferometric SAR image of a urban area
 - ✓ Three simple geometric codes
 - □ Study the geometric mechanisms
 - □ Study of the detection of point/extended target inside the canyon
 - □ Prediction of the range profile
 - ✓ EM considerations: nature of the material of the building
 - □ Impact of the Brewster angle
- Perspectives
 - * To use different polarizations
 - * To use different incidence angles

Thank you for your attention

Questions?