

→ POLINSAR 2013

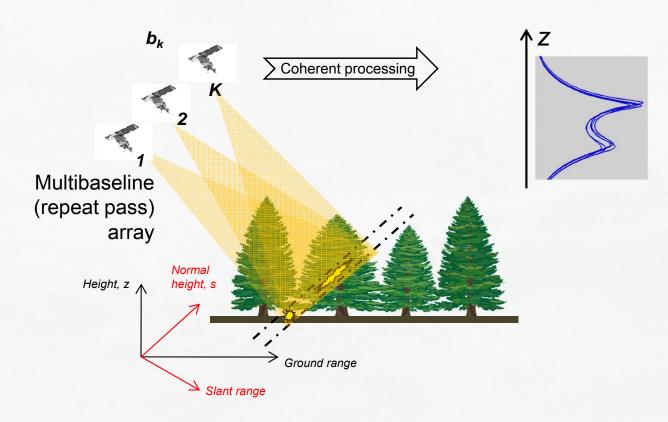
The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

Diff-Tomo Separation of Temporal Decorrelation Mechanisms in Forest Multi-Pol Airborne Data

Fabrizio Lombardini^{1,2}, Federico Viviani^{1,2}, Francesco Cai¹

University of Pisa, Dept. of Information Engineering, Pisa, Italy
 CNIT-RaSS National Laboratory, Pisa, Italy

Outline

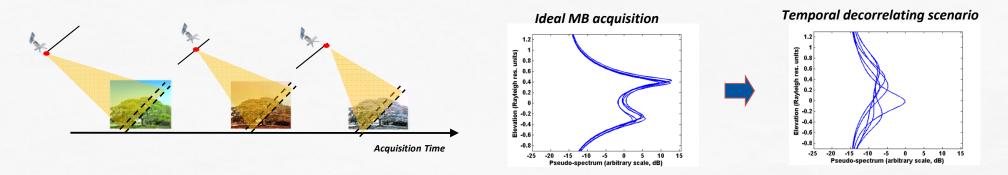

- Recall of 3D SAR Tomography concept
 - Open issues: temporal decorrelation
- The extended Differential Tomography (4D) framework
- Diff-Tomo for multidimensional imaging of forests:
 results with P-band E-SAR data over a boreal forest
 - Forest 4D space-time signatures of temporal decorrelation
 - Large forest area height-varying temporal coherence separation
 - HV polarization
 - HH polarization
 - Recall of other forest Diff-Tomo functionalities:
 Tomography robust to temporal decorrelation
- Conclusions and future work

3D SAR Tomography concept

Volumetric forest scenarios

Key importance in the context of the carbon cycle budget control!

Tomo-SAR can localize the multiple scatterers through spatial spectral estimation (i.e. elevation beamforming)


However...

- Limited and sparse baseline distribution, poor 3D Fourier imaging quality Proposed solutions: adaptive BF, SVD, subspace decomposition, spatial interpolators, etc...
- Possible limited operativity in non-fully coherent scenarios...

Open issues

Elevation blurring problems from temporal decorrelation and scatterers motion

NASA-JPL, ESA and DLR recognized this as a possible limiting factor for the operational development of SAR Tomography (forest scatterers and spaceborne acquisitions)

Studies of Tomo-SAR blurring and investigation of processing solutions

Classical (global) coherence analysis not enough: blurring origins are local

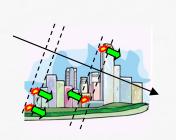
Differential SAR Tomography concept Cesa

D-InSAR and Tomo-SAR crossed in a new unified framework: [Lombardini, IEEE-TGARS '05]

Height-dependent spatial frequency: $\omega_{\rm S} = 4\pi z/(\lambda R \sin\theta)$

Line-of-sight velocity-dependent temporal frequency: $\omega_{\tau} = 4\pi v/\lambda$

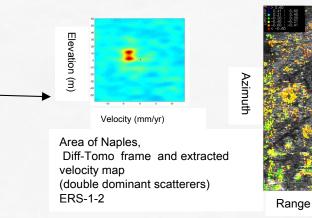
$$y(b,t) \rightleftharpoons \gamma(\omega_S,\omega_T)$$


2D Fourier relation

Multitemporal multibaseline cmplx data

Cmplx amplitude elev.-vel. distribution

Joint elevation-velocity resolution of multiple scatterers (by proper sparse-sampling sidelobe cleaning)


Diff-Tomo "opens" the SAR pixel extracting joint height and dynamical information of superimposed scatterers ("4D imaging", 3D+time) in complex scenarios*

Discrete space-time spectrum

Temporal frequencies code velocities Example: subsidence in urban layover areas

Temporal frequencies are signatures of the temporal deco<u>rrelation !</u>

[Lombardini-Pardini, IEEE-TGARS '12]

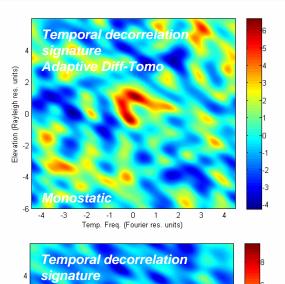
4D space-time signatures of decorrelation Cesa

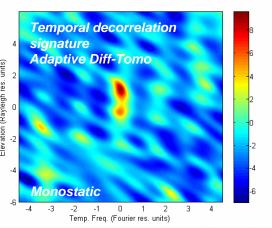
Temporal perturbations of a scattering component

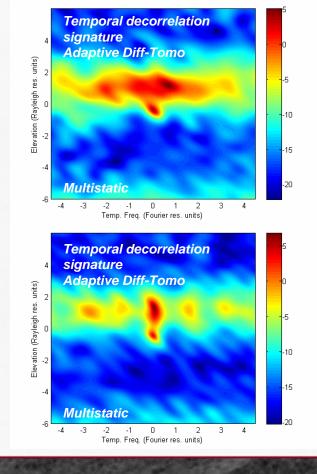
temporal harmonic distribution

Temp. freq. does not merely code velocity anymore

Diff-Tomo processing Continuos temporal spectrum signatures of temporal decorrelation can be detected!


New vision in SAR interferometry...


baseline-time autocorrelation


$$r_{v}[b,t] \Leftrightarrow \overline{|\gamma(\omega_{s},\omega_{T})|^{2}}$$

space-time p.s.d.

[Lombardini-Cai, IGARSS '08]

Sample simulated volume: t_c = 2.8 revisit times, temporal bandwidth 1 Fourier r.u., $\rho_0 = 1$, compact electrically stable ground scatterer, scatterers separation 1.2 Rayleigh r.u., sparse monostatic/multistatic acquisition pattern

Temporal signal harmonics can be decoupled from baseline signal harmonics

Sample simulated volume: $t_c = \infty$ temporal bandwidth 0 Fourier r.u., $\rho_0 = 0.7$.

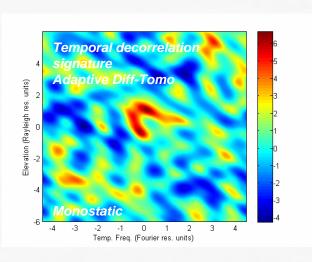
4D space-time signatures of decorrelation Cesa

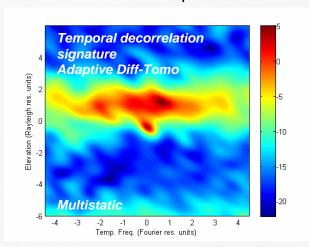
Temporal perturbations of a scattering component

temporal harmonic distribution

Temp. freq. does not merely code velocity anymore

Diff-Tomo processing Continuos temporal spectrum signatures of temporal decorrelation can be detected !


New vision in SAR interferometry...

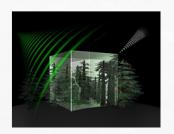

baseline-time autocorrelation

$$r_{y}[b,t] \Leftrightarrow \overline{|\gamma(\omega_{s},\omega_{T})|^{2}}$$

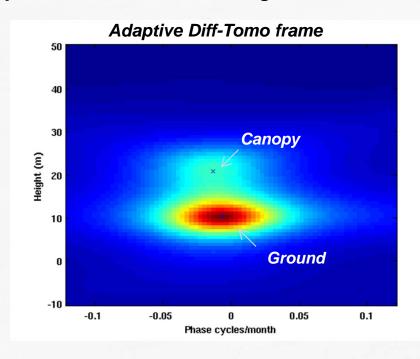
space-time p.s.d.

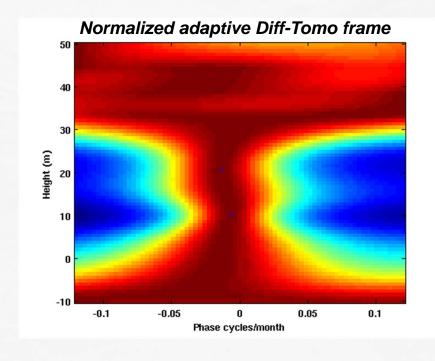
[Lombardini-Cai, IGARSS '08]

Sample simulated volume: t_c = 2.8 revisit times, temporal bandwidth 1 Fourier r.u., $\rho_0 = 1$, compact electrically stable ground scatterer, scatterers separation 1.2 Rayleigh r.u., sparse monostatic/multistatic acquisition pattern


...allowing new functionalities for analyzing forest volumetric dynamic scenarios

- 1 Coherence separation: the Diff-Tomo framework can recover information about different temporal decorrelation mechanisms of overlayed scatterers, exploiting temp. bandwidth estimates
- 2 Decorrelation-robust Tomo-SAR... [Lombardini-Cai-Pardini, EUSAR'10]
- 3 Possibly, subcanopy subsidence estimation...

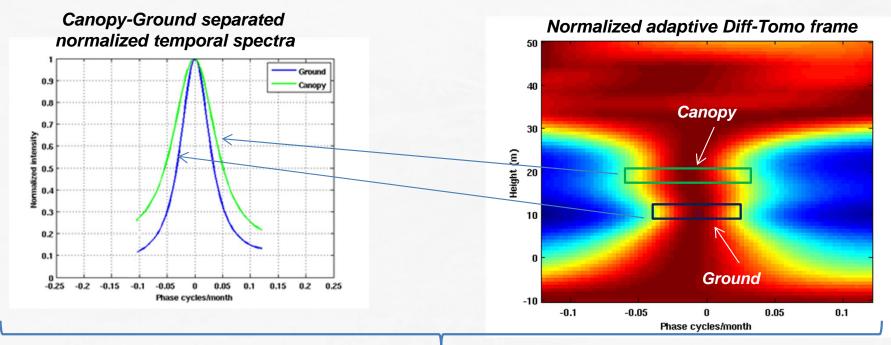

4D space-time signatures: proof of concept Cesa


Remningstorp forest site Mild temporal decorrelation

- DLR's E-SAR (ESA project BIOSAR), P-band, 9 tracks
- Baseline span: 80 m, height Rayleigh resolution 28 m
- Time span: 2 months, temp. freq. Fourier resolution 0.5 phase cycles/month
- HV pol.

Non-parametric analysis of a forested cell – Real data investigation of space-time decorrelation signatures

4D space-time signatures: proof of concept Cesa



Remningstorp forest site Mild temporal decorrelation

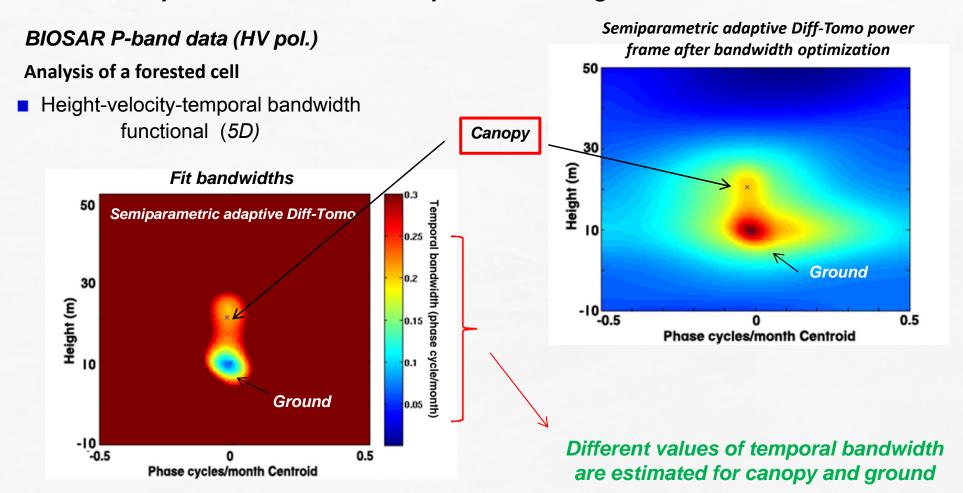
- DLR's E-SAR (ESA project **BIOSAR**), **P-band**, 9 tracks
- Baseline span: 80 m, height Rayleigh resolution 28 m
- Time span: 2 months, temp. freq. Fourier resolution 0.5 phase cycles/month
- HV pol.

Non-parametric analysis of a forested cell – Real data investigation of space-time decorrelation signatures

Canopy scatterer detected with a wider spread along temporal frequency w.r.t. ground! First verification on real data of the concept of space-time signatures of temporal decorrelation

[Lombardini-Cai, ESA Fringe '11] 6

Temporal coherence separation


Parametric separation of different temporal scattering mechanisms inside the SAR cell

Temporal coherence separation

Parametric separation of different temporal scattering mechanisms inside the SAR cell

First parametric
results: [Lombardini-Cai, ESA Fringe '11]

Bandwidth (temporal decorrelation level) profiling is possible, without special HW!

Temporal coherence separation (2) Cesa

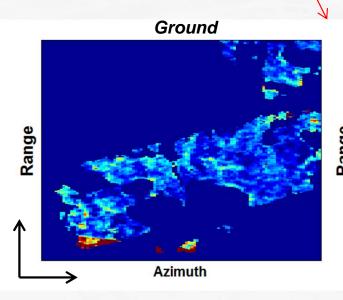
Large scale analysis with HV polarization

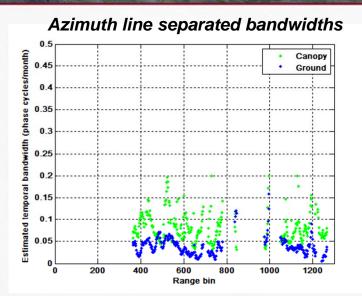
Analysis of stratified temporal decorrelation mechanisms on boreal forest

Mild decorrelating scenario, weak canopy scattering

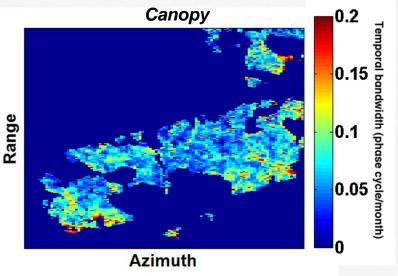
First area results:

[Lombardini-Cai, Fringe '11]


[Lombardini-Cai-Viviani, IGARSS '12]


Statistical analysis

	Canopy	Ground
Mean temporal bandwidths (phase- cycles/month)	0.08	0.04
Mean coherence times (months)	9.1	16.8

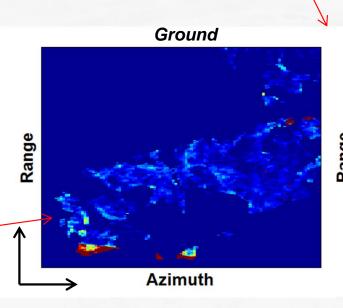

Estimates achieved for overall coherence down to about 0.4

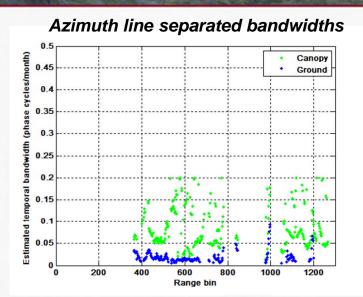
Very extensive separations (500 land hectares processed)!

Separated bandwidth maps

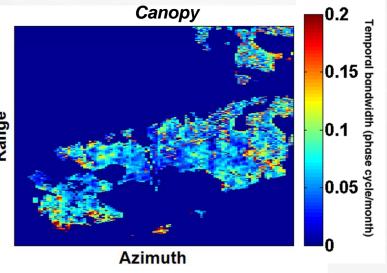
Temporal coherence separation (3) esa

Analysis of stratified temporal decorrelation mechanisms on boreal forest

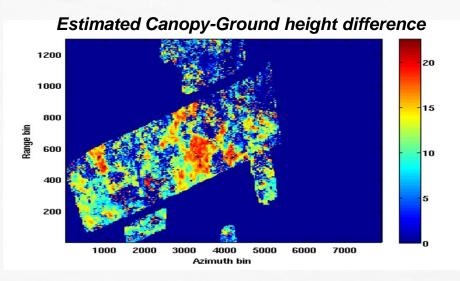

Mild decorrelating scenario, weak canopy scattering

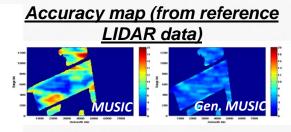

Statistical analysis

	Canopy	Ground
Mean temporal bandwidths (phase- cycles/month)	0.08	0.03
Mean coherence times (months)	9.1	35.5 (eq.)


Coherence time of ground about two-fold rising in HH pol.
w.r.t. HV pol.
(trunk-ground dihedral contributions)

Very extensive separations (500 land hectares processed)!


Separated bandwidth maps



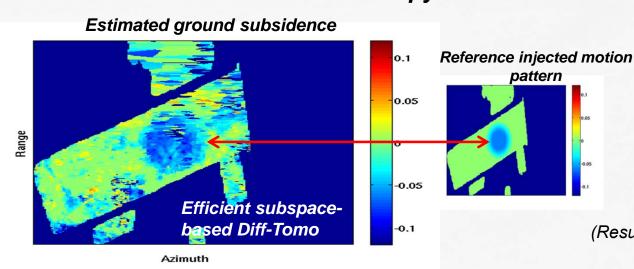
Other Diff-Tomo functionalities

Robust extraction of forest height in temporal decorrelating scenarios through Diff-Tomo

Extensive statistical analysis:

Method	Resolution
Gen. MUSIC	90 %
MUSIC	45 %

Resolution can be restored!


Higher accuracy than classical methods!

The only solution <u>available for</u> (array) Tomo-SAR <u>tailored</u> for robustness to temporal decorrelation!

[Lombardini-Cai-Pardini, EUSAR'10]

[Lombardini-Cai, Fringe '11]

Sub-canopy subsidence estimation

Extensive statistical analysis

Ground / Volume power ratio	conditioned RMSE gain
from 10 to -2 dB	1.1
from 2 to -2 dB	1.25

(Results w.r.t. the best perfoming classic method)

10

Conclusions

- ➤ The **Differential Tomographic (Diff-Tomo) technique** is an advanced methodology for description and monitoring of decorrelating volume scatterers, beyond urban applications
 - Concept of space-time signatures of temporal decorrelation and proof with P-band airborne data
 - First parametric Diff-Tomo separation of different overlayed temporal decorrelation mechanisms extended to large scale and different polarization (HV and HH): new phenomenological analyses of temporal decorrelation possible with no special acquisitions
 - Temporal decorrelation-robust tomography through Diff-Tomo reported, showing its potentials and capabilities
 - Potential of Diff-Tomo for subcanopy ground subsidence monitoring recalled

Future work and perspectives

- ➤ Extensive investigations on larger timespan dataset and on dataset with stronger temporal decorrelation (e.g. L-band)
- ➤ Future spaceborne missions may benefit from the application of these Diff-Tomo analysis and processing concepts.

Thanks for your attention!