

<nowledge for Tomorrow

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Pol-InSAR Forest Height Inversion by means of L-band F-SAR Data - Forest Monitoring & Vertical Structure

<u>Seung-Kuk Lee⁽²⁾⁽¹⁾</u>, Matteo Pardini⁽¹⁾, Florian Kugler⁽¹⁾, Kostas Papathanassiou⁽¹⁾, & Irena Hajnsek⁽²⁾⁽¹⁾

Microwaves and Radar Institute, German Aerospace Center (DLR), Germany
Institute of Environmental Engineering, ETH Zurich, Switzerland

Tandem-L

A German mission proposal for monitoring dynamic processes on the Earth surface @ L-band

a la transferra	Science Product	Coverage	Product Resolution	Product Accuracy
Biosphere	Forest Height		50 m (global) 20 m (local)	~ 10 %
	Above Ground Biomass	re Ground Biomass All forest 100 m (globa areas ≤ 50 m (region		~ 20 % (or 20 t/ha)
	Vertical Forest Structure	(Height \geq 8 m)	50 m (global) 20 m (local)	3 layers
	Underlying Topography		50 m	< 4 m

Polarimetric SAR Interferometry

L-band F-SAR System

HH Polarization

Parameters	F-SAR	E-SAR		
Incidence angle (°)	25 – 60			
Platform velocity (m/s)	≈ 90			
Polarizations	HH, HV, VV, VH			
Altitude above ground	ude above ground ≈ 3100			
Center frequency (MHz)	1325	1300		
Wavelength (m)	0.226	0.23		
Chirp bandwidth (MHz)	150	94		
Range resolution	1.00	1.49		

Traunstein Test Site

	The second s
Sensor	F-SAR
Frequency	L-band (1325 MHz)
Test site	Traunstein (Germany)
Forest type	Temperate
Topography	Moderate slopes
Height	25 ~ 30m
Species	N. Spruce, E. Beech, White Fir
Biomass	40 ~ 450 t/ha
Acquisition	17 th June 2011 (6 tracks) <u>13th November 2012 (6 tracks)</u> 23 rd November 2012 (5 tracks)

L-band F-SAR Forest Height Map

Pol-InSAR Inversion

Lidar H100

0 m

50 m

• L-band F-SAR Pol-InSAR inversion was successfully performed.

TreeSAR & TempoSAR Campaigns; Traunstein Test Site

Collect L-band Pol-InSAR data sets with a variety of spatial and temporal baselines

- Multi-baseline Pol-InSAR Inversion / Impact of temporal decorrelation
- Above Ground Biomass
- Forest monitoring
- Tomography ...

System	Campaign	Date	Acquisi tion	Temporal Baseline	Pol- InSAR	Lidar
E-SAR	TreeSAR 2003	Oct.	2	15 days	0	×
	TempoSAR 2008	June	5	1 - 13 days	0	0
	TempoSAR 2009	Apr May	5	1 - 15 days	0	×
		Oct Nov.	3	1 - 9 days	0	×
F-SAR	TempoSAR 2011	June	1	Х	×	×
	TempoSAR 2012	Nov.	2	10 days	Δ	0

E-SAR & F-SAR Pol-InSAR Inversion Results

0 m

50 m

Delta Forest (△F) Traunstein: 2003 → 2008

TempoSAR 2008 TreeSAR 2003 TreeSAR 2003 TempoSAR 2008 $\Delta t \approx 5$ years 40 **TempoSAR 2008: E-SAR** 10 10 0 20 10 30 0 40

0 m

TreeSAR 2003: E-SAR

50 m

• The mean forest height in Traunstein has been reduced from 2003 to 2008

Delta Forest (△F) Traunstein: 2008 → 2012

0 m

50 m

40

40

Delta Forest (△F) Traunstein: 2008 → 2012

0 m

50 m

Delta Forest (△F) Traunstein: 2008 → 2012

40

A growth of between 3 m and 5 m could be • observed over a period of four years.

0

0

10

20

Lidar H100 2008

30

40

MB-Pol-InSAR Data for Vertical Structure

PCT coefficients; HV pol.

Lidar Height

C₁

C2

C3

Different forest areas have different coefficients Considering 3 coefficients allows for a better distinction

Removal of Ground Scattering

Traunstein TempoSAR '08 DLR's E-SAR

Baselines + polarizations can be used to estimate ground topography and ground to volume ratio (in each polarization)

Ground height estimation, full-pol **M-RELAX**

Further details @ poster session

Forested areas: Bias 0.35m, Std 1.6m

Removal of Ground Scattering

Fundamental assumption: RVoG model

m(w) and φ_0 can be estimated accurately with multibaselinemultipol techniques

 \Rightarrow An estimate of γ_V can then be obtained for each polarization channel

As the volume scattering is assumed independent from channel to channel, the PCT coefficients can be estimated from the average volume coherences in the available polarization channels

PCT Coefficients After Ground Removal Full-pol Processing

□ Higher distinction between different forest areas

Examples of Estimated Vertical Profiles

Conclusions

L-band F-SAR Pol-InSAR Inversion

- L-band F-SAR Pol-InSAR forest height shows good estimation performance.
- Validation (against Lidar H100) shows a good correlation coefficient (0.80) and an RMS error of about 3 m.

\Box Forest Changes (Δ F)

- Time-series Pol-InSAR forest height maps can monitor forest changes; clear cut, logging, deforest, growth and so on.
- Δ Pol-InSAR inversion results are compared with Δ Lidar H100.
- △F will be quantitatively estimated and validated with reference forest information (Lidar H100, field measurement...).

Forest Vertical Structure

- Vertical structure of vegetation free of ground scattering has been derived by combining multi-baseline/full-pol data; a first validation has shown encouraging results.
- Further experiments are ongoing in order to interpret the radar profiles and to relate them to the 3-D biomass distribution.

Thank you very much for your attention!