

Dual-baseline Polarimetric SAR Tomography for Tree Height Estimation Using Single-Pass L-Band PolInSAR Data

> Yue Huang, Qiaoping Zhang, <u>Marcus Schwaebisch</u> Ming Wei, Bryan Mercer Jan, 2013

- Objectives
- System
- Data processing
 - Wavenumber-domain
 - Time-domain
- Methodology for tree height estimation
 - Dual-baseline SAR tomography
- Results
 - Underlying ground and tree top heights
 - Compared with single-baseline PolInSAR inversion techniques
 - Validation against Lidar data
- Conclusion

Rationale and Objectives

- Climate change context:
 - 4 billion ha (30%) of global land cover is forested
 - Within these forests about 72 t/ha carbon are sequestered in above-ground biomass (global mean)
 - Forest destruction believed responsible for almost 20% of CO2 annual emissions
 - Greater than the total transport industry contribution globally

Rationale and Objectives (Cont'd)

Baseline biomass measurements require improvement in:

- spatial resolution (to 0.5 ha)
- coverage (particularly the tropics)
- accuracy (goal 20%)
- Objective of this work is to demonstrate biomass measurement with single-pass airborne L-Band Pol-InSAR

Single-pass L-Band PolInSAR System

Peak power	0.4 kW	
Wavelength	0.2262 m	
Polarization	quad (HH, HV, VH, VV)	
PRF (per channel)	2200 Hz	
max. system	up to 135 MHz	
bandwidth	(80 MHz nominally)	
range resolution	up to 1.1 m	
azimuth resolution	0.25 m	
typical flight altitude	1000 m	
swath width	1.2 km	
interferometric baseline	3.5 m	
NESZ	< -40dB	

- Assembled in 2007

- Gulfstream Commander platform

- Radar hardware based on previous X- and P-Band TopoSAR system

- Antennas mounted on rigid beam passing through the un-pressurized part of the fuselage

Data processing

Focusing performance

- Interferometric performance, channel mis-registration, coherence (Schwaebisch et al, IGARSS 2010)
- Tomographic focusing

Single-pass Dual-baseline Possibility

- In our experimental L-Band system, pulses were recorded in both ping-pong and non ping-pong modes simultaneously.
 - \rightarrow 12 active channels were recorded
- This provided three independent antenna phase center positions (noted as NN-NF-FF) in a single flight.
 - →Dual-baseline configuration

Full Baseline: NN-FF

Half Baseline: NN-NF

Dual-baseline PolInSAR Signal Model

Single source

POLSAR unitary target vector

$$\mathbf{k} = [k_1, k_2, k_3]^T, \, \mathbf{k}^{\dagger} \mathbf{k} = 1$$

Polarimetric steering vector

$$\mathbf{a}(z,\mathbf{k})=\mathbf{k}\otimes\mathbf{a}(z)$$

3-M element MB-POLinSAR signal

$$\mathbf{y}_{P}(l) = \begin{bmatrix} \mathbf{y}_{1}(l) \\ \mathbf{y}_{2}(l) \\ \mathbf{y}_{3}(l) \end{bmatrix} = s(l)\mathbf{a}(z, \mathbf{k}) + \mathbf{n}(l)$$

D sources

Polarimetric steering matrix

 $\mathbf{A}(\mathbf{z},\mathbf{K}) = [\mathbf{a}(z_1,\mathbf{k}_1),\ldots,\mathbf{a}(z_D,\mathbf{k}_D)]$

• 3-M element MB-POLinSAR signal

$$\mathbf{y}_P = \mathbf{A}(\mathbf{z}, \mathbf{K})\mathbf{s} + \mathbf{n}$$

$$\mathbf{R} = \frac{1}{L} \sum_{1}^{L} \mathbf{y}_{P}(l) \mathbf{y}_{P}^{\dagger}(l)$$

1

Polarimetric Tomographic Techniques

• FP-Beamforming:

$$P(z) = \frac{\lambda_{max}(\mathbf{B}^{H}(z)\mathbf{R}\mathbf{B}(z))}{m^{2}} \quad \mathbf{B}(z)^{H}\mathbf{R}\mathbf{B}(z)\mathbf{k}_{max} = \lambda_{max}\mathbf{k}_{max}$$

• FP- Capon:

$$P(z) = \frac{1}{\lambda_{\min}(\mathbf{B}^{H}(z)\mathbf{R}^{-1}\mathbf{B}(z))} \quad \mathbf{B}(z)^{H}\mathbf{R}^{-1}\mathbf{B}(z)\mathbf{k}_{\min} = \lambda_{\min}\mathbf{k}_{\min}$$

• FP-Music:

$$P(z) = \frac{1}{\lambda_{min}(\mathbf{B}^{H}(z)\mathbf{E}_{n}\mathbf{E}_{n}^{H}\mathbf{B}(z))} \quad \mathbf{B}(z)^{H}\mathbf{E}_{n}\mathbf{E}_{n}^{H}\mathbf{B}(z)\mathbf{k}_{min} = \lambda_{min}\mathbf{k}_{min}$$
$$\mathbf{B}(z) = \begin{bmatrix} \mathbf{a}(z) & 0 & 0\\ 0 & \mathbf{a}(z) & 0\\ 0 & 0 & \mathbf{a}(z) \end{bmatrix} \quad \text{Elevation: } \hat{\mathbf{z}} = \arg\max P(z)$$
$$\text{Scattering mechanism: } \mathbf{k}_{min} \quad \text{or } \mathbf{k}_{max}$$

Global view of test sites

Test Site: Edson

- Test area near Edson: a forested region of Alberta, Canada
 - Patchwork of lodgepole pine forest and clearcut areas
 - Clearcuts may have been replanted and in a regrowth phase
 - Typically 15-30 m high
 - L-Band data acquired in Nov.
 2007 and again in June 2008
- Ancillary data
 - X-Band DSM (from 2006)
 - Lidar ground elevations and point cloud (courtesy Terrapoint Canada)
 - Color air photo (Valtus)

Tomographic techniques for tree estimation

- In our real dual-baseline case, Capon's method merged ground and volume contributions in vertical direction;
- Combining Capon and MUSIC estimators
 - MUSIC: separate ground and volume centers: z_a
 - Capon: approximate the vertical distribution of scatterers, truncate tree top height at -3dB from the volume center: z_{top}

Forest/Nonforest mask for tomographic processing

Lidar Tree height map

Lidar Hv > =10m TD data: coh1.mag<0.93

- Focus on trees higher than 10m, mask out short vegetations
- Tomographic processing: order=1, bare; order=5, forested

Results at Near Range

Pauli-coded

Black lines: LiDAR

Gray lines: SARTomo

Time-domain data provides more stable and precise estimates for ground and tree top.

Results at Mid-Far Range

Pauli-coded

Black lines: LiDAR

Gray lines: SARTomo

Time-domain data provides much better tomographic focusing

Results at Far Range

Pauli-coded

Black lines: LiDAR

Gray lines: SARTomo

Test zone

Georeferenced results from T-D data

Tomographic results

Phase optimization algo.

Difference maps for DTM

Tomo DTM-Lidar DTM

Pha.opt DTM-Lidar DTM

Difference maps for DTM

Tomo DTM-Lidar DTM

Pha.opt DTM-Lidar DTM

Mask out bare areas, compare forested areas

Tomographic techniques have less overestimation for underlying ground

10

8

6

4

2

0

-2

-4

-6

-8

-10

Difference maps for DSM

Tomo DSM-Lidar DSM

Pha.opt DSM-Lidar DSM

Difference maps for DSM

Mask out bare areas, compare forested areas

Tomographic techniques better than phase opt algorithms for tree top heights

Dif DTM=Tomo DTM-Lidar DTM

Dif DSM=Tomo DSM-Lidar DSM

	Mean (m)	STD(m)
Dif DTM	2.58	1.65
Dif DSM	0.12	2.40

Summary and Outlook

- We can potentially obtain better results using dualbaseline SAR tomography, in terms of ground elevation recovery and tree height estimation.
- The system suffered from multi-path affects, which makes both geometric and polarimetric calibration challenging.
- The L-band dual-baseline configuration makes tomographic techniques challenging for the ground elevation estimation.

Acknowledgement

