SAR APPLICATIONS IN GREECE

With emphasis for Harokopio University/ Dep. of Geography activities

Issaak Parcharidis, Assist. Prof. Harokopio University of Athens Department of Geography <u>parchar@hua.gr</u>

4th Advanced Training course in Land Remote Sensing, Harokopio University

Following its ratification of the ESA Convention

Greece became ESA's 16th Member State in March 2005

Cooperation between ESA and the Hellenic National Space Committee began in the early 1990s and in 1994 Greece signed its first cooperation agreement with ESA. This led to regular exchange of information, the award of fellowships, joint symposia, mutual access to databases and laboratories, and studies on joint projects in fields of mutual interest.

50

The available Earth Observation datasets, for which the ESA Data Policy is applicable, can be split into two major groups:

1. The free dataset, representing the majority of data, and including data collections available on-line without any technical or financial constraints attached, and

2. The restrained dataset for which priorities are managed through categories of use, due to technical and financial constraints.

The restrained dataset includes: The SAR data from the ERS and Envisat missions.

Data is provided free of charge. A CAT-1 project should be submitted

CAT-1 tool

Almost 100 proposals accepted from Greek institutions from which 1/3 concerns SAR applications mainly in the domain of HAZARDS and some for OCEANOGRAPHY.

The crucial task was following PS interferometric processing to identify point targets over the four pylons as the pavement is suspended

A data set of ENVISAT ASAR C-band (ERS-like) comprising 37 scenes along descending orbit, track 279, and 34 TerraSAR-X in stripmap (SM) ascending mode 007R, orbit number 2803, HH polarization; this is at incidence angles between 29 degrees and 32 degrees, covering the periods 2002-2010 and 2010-2012 respectively.

Due mainly to resolution ENVISAt data display excellent results for the broader area of the bridge but TerraSAR-X data show a number of point targets on the pylons.

Number of scenes	34
Date range of analysis	2010-2012
Satellite data used	TerraSAR-X
Master Scene Date	20110503
Georeference (X,Y)	± 5 m (depends
accuracy	on the area)
Reference data used	SRTM dem v.3
for georeference	
Projection system used	UTM - WGS84'
Reference point	566777.935 E,
location	4242926.000N
	(ID 176677)

Interferograms used for analysis				
Master Date	Slave Date	Bperp (m)	dT (days)	
20110503	20101119	107.3250	-164,99997	
20110503	20101130	-449,3688	-153,99997	
20110503	20101211	-40.6341	-142,99998	
20110503	20101222	237.0263	-132	
20110503	20110102	16.9768	-121	
20110503	20110113	-486,5366	-110	
20110503	20110124	-367,0574	-99.00002	
20110503	20110204	-286,1107	-88.00002	
20110503	20110215	113.3267	-77.00002	
20110503	20110226	-607,7129	-66.00001	
20110503	20110309	-47.8139	-55.00002	
20110503	20110320	-518,1334	-44.00001	
20110503	20110331	65.4503	-33.00001	
20110503	20110411	78.7348	-22.00001	
20110503	20110503	0.0000	0.00000	
20110503	20110514	-73.2344	11.00001	
20110503	20110525	-308,6015	22.00001	
20110503	20110627	-397,4946	55.00004	
20110503	20110810	-96.0151	99.00007	
20110503	20110821	-514,2517	110.00007	
20110503	20111015	-271,1634	165.00008	
20110503	20111026	-203,8199	176.00008	
20110503	20111106	-201,1055	187.00008	
20110503	20111117	-169,3727	198.00008	
20110503	20111209	-402,9961	220.00007	
20110503	20120111	-371,4608	253.00004	
20110503	20120328	-408,7716	330.00005	
20110503	20120408	-262,8035	341.00005	
20110503	20120430	-380,1148	363.00006	
20110503	20120522	128.4530	385.00008	
20110503	20120602	-366,2255	396.00009	
20110503	20120624	-525,9998	418.00010	
20110503	20120716	-336,8755	440.00010	
20110503	20120807	-410,6468	462.00011	

TERR	AFIRMA	HUA Remote Sensing Team ref_point * points deformation rate mm/yrs • -5,000 - max • -4,9902,500
Number of PS	5984	 ◆ -2,499 - 0,000
identified	050/1-3/	♦ 0,001 - 2,500
PS density (PS/km ²)	950/km ² (on	 2,501 - 5,000
Point motion statistics	% of points in	 5,001 - max
(mm/year classes)	each mm/year	
(IIIII) year classes)	class	
-max to -5.0	2.4 %	$\sim M$
-5.0 to -2.5	8.7 %	
-2.5 to 0	53.6 %	(\cdot)
0 to +2.5	26.4 %	$\sim M$
+2.5 to +5.0	2.9 %	
+5.0 to +max	6.0%	
Average annual motion	- 0.11 mm/year	
rate of the entire		
processed area	0.51	
average appual motion	0.51 mm/year	
rate		
		N

HAROKOPIO UNIVERSITY Department of Geography			HUA Remo	HUA Remote Sensing Team			
Results Comparison – Linear Deformation (mm/yrs) Pulon 1 Pulon 2 Pulon 3 Pulon 4							
PSI HUA (ref.point in Antirio)	-11.82	-0.04	-3.07	-2.26			
PSI HUA (ref.point in Rio)	-7.13	-0.08	-3.52	-2.28			
PSI DLR	-	-4.30	-3.20	-8.90			

Seasonal ground deformation monitoring over Southern Larissa Plain (Central Greece) by SAR interferometry

The aim of this study is to investigate surface deformation signals associated with annual precipitations and groundwater withdrawal, demonstrating the suitability of DInSAR for examining dewatering induced subsidence. Specifically, we attempt to measure seasonal deformation and its spatial distribution. Displacement maps of high spatial resolution were generated for the broader Larissa Plain using SAR acquisitions from

TERRAFIRMA

Areas of research interest over Greece

Our areas of interest and application of SAR interferometry through national and international support include also Egypt (Cairo, Alexandria, Sinai Peninsula), Italy (L'Acquila, Nobiallo landslide, Cita di Messina), Japan (Tohuku earthquake).

You are welcome in our University using Erasmus frame to work with us