### **GMES Sentinel-1 System Overview**



Paul Snoeij, Dirk Geudtner, Ramón Torres, Malcolm Davidson, David Bibby, and Svein Lokas

European Space Agency, ESTEC

# Sentinel-1 Mission Objectives and Requirements (1/2)

- Provide routinely and systematically SAR data to GMES services and National services focussing on the following applications
  - ✓ Monitoring of marine environment (e.g. oil spills, sea ice zones)
  - Surveillance of maritime transport zones (e.g. European and North Atlantic zones)
  - ✓ Land Monitoring (e.g. land cover, surface deformation risk)
  - Mapping in support of crisis situations (e.g. natural disasters and humanitarian aid)
  - ✓ Monitoring of Polar environment (e.g. ice shelves and glaciers)

















# Sentinel-1 Mission Objectives and Requirements (2/2)

- Provide C-band SAR data continuity (at 5.405 GHz)
- Data quality similar or better than ERS/ENVISAT (e.g. equalized performance across the swath)
- Complete global coverage within a single repeat orbit cycle (175 orbits in 12 days) and systematic revisit (greatly improved as compared to ENVISAT)
- Capability for repeat-pass SCANSAR interferometry (i.e.TOPS InSAR)
- Systematic data acquisition to enable build-up of long observation time series
- High system availability (i.e. SAR duty cycle)
- Conflict-free operations w.r.t. SAR mode selection for data acquisition (swath width and polarization)
- On-board data latency (i.e. downlink) requires:
  - max 200 min (2 orbits)
  - One orbit for support of near real time (3h) applications
  - Simultaneous SAR acquisition and data downlink for real time applications











## **Sentinel–1 Mission Facts**

- Constellation of two satellites (A & B units)
- C-Band Synthetic Aperture Radar Payload (at 5.405 GHz)
- 7 years design life time with consumables for 12 years
- Near-Polar sun-synchronous (dawn-dusk) orbit at 698 km
- 12 days repeat cycle (1 satellite), 6 days for the constellation
- Both S-1 satellites are in the same orbital plane (180 deg. phased in orbit)
- On-board data storage capacity (mass memory) of 1400 Gbit
- Two X-band RF channels for data downlink with 2 X 260 Mbps
- On-board data compression using Flexible Dynamic Block Adaptive Quantization (FDBAQ)
- Optical Communication Payload (OCP) for data transfer via laser link with the GEO European Data Relay Satellite (EDRS)
- Launch of Sentinel-1 A scheduled for October 2013 followed by Sentinel-1 B 18 months later











## Sentinel-1 SAR Imaging Modes (1/2)



Instrument provides 4 exclusive SAR modes with different resolution and coverage



- Polarisation schemes for IW, EW & SM:
  - ✓ single pol: HH or VV
  - ✓ dual pol: HH+HV or VV+VH
- Wave mode: HH or VV

#### • SAR duty cycle per orbit:

- ✓ up to 25 min in any of the imaging modes
- ✓ up to 74 min in Wave mode

#### Main mode of operations: *IW*

designed to satisfy most GMES user/service requirements (i.e. resolution, swath width, polarisation)

**WV mode** is continuously operated over open ocean



## Sentinel-1 SAR Imaging Modes (2/2)



| Mode                                                 | Incidence<br>Angle   | Single Look<br>Resolution  | Swath Width                                    | Polarisation      | Chirp<br>bandwidth<br>[MHz] |
|------------------------------------------------------|----------------------|----------------------------|------------------------------------------------|-------------------|-----------------------------|
| Interferometric Wide<br>Swath (IW 1-3)               | 30-42 deg.           | Range 5 m<br>Azimuth 20 m  | 250 km                                         | HH+HV or<br>VV+VH | 56.50 – 42.80               |
| Wave mode<br>WV1<br>WV2                              | 23 deg.<br>36.5 deg. | Range 5 m<br>Azimuth 5 m   | 20 x 20 km<br>Vignettes at<br>100 km intervals | HH or VV          | 74.5<br>48.2                |
| Strip Map<br>S1-S6                                   | 20-43 deg.           | Range 5 m<br>Azimuth 5 m   | 80 km                                          | HH+HV or<br>VV+VH | 87.60 – 42.20               |
| Extra Wide Swath<br>(EW 1-5)                         | 20-44 deg.           | Range 20 m<br>Azimuth 40 m | 400 km                                         | HH+HV or<br>VV+VH | 22.20 – 10.40               |
| Image Quality Parameters for all Modes (worst case)  |                      |                            |                                                |                   |                             |
| Radiometric Accuracy (3σ)1 dB                        |                      |                            |                                                |                   |                             |
| Noise Equivalent Sigma Zero -22 dB                   |                      |                            |                                                |                   |                             |
| Point/Distributed Target Ambiguity Ratio -25/ -22 dB |                      |                            |                                                |                   | Gmes                        |
| Phase Error over 10 min 5 deg                        |                      |                            |                                                |                   | We care for a safer world   |

## Sentinel-1 SAR TOPS Mode



**TOPS** (Terrain Observation with Progressive Scans in azimuth) for Sentinel-1 Interferometric Wide Swath (IW) and Extended Wide Swath (EW) modes

- Provides large swath width (ScanSAR) & and enhanced radiometric performance due to reduced scalloping effect
- Important because there is only 1 azimuth look available
  ⇒ radiometric look balancing is not possible (e.g. ENVISAT)
- TOPS Mode implementation: ScanSAR + azimuth Scan:
  - $\pm 0.8^{\circ}$  azimuth scanning at PRI rate
  - $\pm 12^{\circ}$  elevation scanning and beam shaping capability



#### TSX-TOPS image









## Sentinel-1 TOPS InSAR Capability (1/2)



• S-1 TOPS InSAR study based on TerraSAR-X TOPS data, e.g. acquired over Atacama desert (Chile) having 11-day repeat pass interval







 Coherence loss in ScanSAR due to SNR degradation at burst edges (after azimuth pattern correction)

Image courtesy: P. Prats, DLR

- TOPS interferogram generation requires burst synchronization of repeat-pass datatakes
- TOPS burst duration for:
  - ✓ EW: 0.54 s (worst case)
  - ✓ IW : 0.82 s (worst case)
- Requirement for Burst Synchronization: ≤ 5ms





- Azimuth antenna sweeping causes Doppler centroid variations of about 5.5 kHz within bursts
- Introduces an azimuth phase ramp (azimuth fringes) for small co-registration errors





Image courtesy: P. Prats, DLR



 Requires azimuth coregistration to be better than 0.001 samples in order to obtain phase error less than 3°

azimuth





## Sentinel-1 TOPS InSAR Capability (2/2)

## Sentinel-1 Orbital Tube and InSAR Baseline



- Satellite will be kept within an Orbital Tube around a Reference Mission Orbit (RMO)
- Orbital Tube radius (statistical) is 50 m (rms)
- Orbit control is achieved by applying across-track dead-band control at the most Northern point and Ascending Note crossing





- Sentinel-1 A & B will fly in the same orbital plane with *180 deg.* phased in orbit
- 12-day repeat orbit cycle for each satellite
- Formation of SAR interferometry (InSAR) data pairs having time intervals of 6-days

## **Sentinel-1 Attitude Steering Modes**

 $H_{\rm max}$ 

 $\theta_{ref}$ 

Href

## esa

plane

#### **Roll-steering mode**

- Sensor altitude changes around the orbit
- Introduction of additional satellite *roll angle* depending on latitude to maintain a quasi *"constant"* slant range

at Hmin = 697.6 km  $\Rightarrow \theta_{\text{off-Nadir}} = 30.25^{\circ}$ at Hmax = 725.8 km  $\Rightarrow \theta_{\text{off-Nadir}} = 28.65^{\circ}$ 

#### Advantages:

- Single PRF round orbit per swath or subswath (except for S5 (S5-N and S5-S)
- Fixed set of constant *Elevation antenna* beam patterns

#### Total zero-Doppler steering mode

- Yaw and pitch adjustments around the orbit to account for Earth rotation effect
- Provides Doppler centroid at about 0 Hz





## **Sentinel-1 C-SAR Instrument**



- SAR Electronics Subsystem (SES)
  - ENVISAT and RADARSAT-2 heritage
  - Real Sampling (digital I and Q demodulation)
  - High-efficient SAR data compression (FDBAQ)
  - Produces self-standing data packets
- SAR Antenna Subsystem (SAS)
- (12.3 x 0.84 m) with 14 tiles in 5 deployable panels
  - Plated CFRP Waveguides (low-loss) TerraSAR-X heritage
  - T-compensated T/R modules COSMO-SkyMed heritage
  - Internal calibration for Radiometry ERS/ENVISAT heritage





## Sentinel-1 SAR Electronics Subsystem





## **Transmit Receive Modules**





### SAR Antenna Subsystem Tile





## **SAR Antenna Testing**





## **Sentinel-1** Platform









Central Structure with PCDU & CAPS Panels and with Propulsion S/S and Harness integrated

Solar Array deployment





## Sentinel-1 In-Orbit Commissioning Phase Activities

## Cesa

#### End-to-End Spacecraft and System performance verification and calibration

- Check-out of spacecraft and ground segment
- In-orbit verification of instrument performance and calibration:
  - ✓ internal instrument calibration using network of calibration pulses to monitor drift in Tx & Rx signal paths, and PCC techniques to monitor T/R modules
  - ✓ antenna pointing calibration (< 0.01°)</li>
  - ✓ antenna model verification (0.2 dB ( $3\sigma$ ) for absolute 2-way gain)
  - ✓ absolute radiometric calibration (< 1 dB ( $3\sigma$ ))
  - ✓ radiometric stability (<0.5 dB (3σ))</p>
  - ✓ geometric calibration (pixel localization: 2.5m ( $3\sigma$ ))
  - ✓ polarimetric calibration
  - ✓ interferometric verification
- Level 0 and Level 1b SAR product verification (i.e. wrt SAR instrument performance)

0.0 0.5 Devation look angle [deg]

To be completed within 3 months (Challenge!)

## **Sentinel-1 Commissioning Phase Calibration Sites**



Current timeline consists of data acquisitions over:

- Transponder sites (3) in NL
- Lake and desert areas for NESZ measurement
- Rainforest for antenna model verification and radiometric calibration
- Long data takes (25 minutes) for all modes
- DLR test site for complementary calibration activities (Corner reflectors and transponders)
- InSAR verification sites (systematic generation) repeat-pass interferograms (e.g. Lake Uyuni, Atacama desert, Death Valley)
- Measurement of InSAR phase stability (closed) loop phase) over Corner Reflector site at DLR
- Measurement of phase stability in overlap area between bursts and sub-swaths









## Conclusions

- Sentinel-1 will provide routinely and systematically SAR data for operational monitoring tasks especially for GMES Services and National services
- Using the same SAR imaging mode (instrument settings, e.g. IW) facilitates the build-up of *data time series* for long-term continuity of observations with *equidistant* and *short time intervals (interferogram stacks)*
- TOPS burst synchronization to enable TOPS InSAR
- Sentinel-1 A & B will fly in the same orbital plane with 180 deg. phased in orbit, each with 12-day repeat orbit cycle
- Formation of InSAR data pairs having time intervals of 6-days
- Small orbital tube with radius of 50m (rms) provides small InSAR baselines

#### $\Rightarrow$ Coherent Change Detection Monitoring applications

Monitoring of geophysical phenomena related to surface displacements and/or changes in scattering properties having different time scales (mm/year – m/day)











#### 2011-Sep-19 14:57:05 UTC Thank you for your attention MLST : SZA :

Range : 31101.1 km Altitude : 31101.1 km

Lat : Lon :





Image © European Space Agency, Institute of Photogrammetry and Remote Sensing, TU Wien, Austria Mosaic elaboration: Taitus Software SAYOIR - Swath Acquisition Planner - © TAITUS SOFTWARE