The chott El Djerid, Tunisia: Observation and interpretation of a SAR phase signature over evaporitic soils

Ph. Paillou, S. Sufyar Université de Bordeaux, OASU – LAB, France paillou@obs.u-bordeaux1.fr

N. Sayah Centre National de Télédétection, Tunis, Tunisie

P.-L. Frison Université Paris-Est, Marne la Vallée, France

POLINSAR 2013, ESA-ESRIN, Frascati

Evaporitic Soils in Arid Environments

- → Salt crust deposits in high evaporating environments (deserts)
- → A sign of past and/or present water resources (shallow aquifers)
- \rightarrow High temporal dynamics: flooded / dry surfaces
- \rightarrow High contrast in SAR data: roughness + permittivity change
- \rightarrow A signature in both amplitude and *phase* of the radar signal

The Chott El Djerid, Tunisia

A large (80 x 120 km) evaporitic area in southern Tunisia, with high annual variability

On the field: Flat and salty...

Temporal Variation at C-band (5.2–5.6 GHz)

* ASCAT • ASAR

RADARSAT-2

Radarsat-2 SOAR 592

Sinclair decomposition R=VV G=(HV+VH)/2 B=HH

Wet: HH = -34.3 +/- 1.5 dB VV = -34.2 +/- 1.5 dB (RDS2 noise level)

Dry: HH = -13.1 +/- 1.5 dB VV = -10.0 +/- 1.5 dB

7 months (Feb. \rightarrow Aug. 2009) of RADARSAT-2 fullpol C-band acquisitions (5m, 39°) with 24 days rep.

Temporal series of C-band (5.409GHz) Radarsat-2 images of Chott El Djerid: (a) σ_{hh}/σ_{vv} and (b) phase difference $\Phi_{hhvv} = |\Phi(HH) - \Phi(VV)|$. Five images are presented at different acquisition dates: the first one, the 4th of February, the last one, the 8th of September 2009

Temporal evolution of the co-pol phase difference:

 $0 < \Phi_{HHVV} < 20^{\circ}$

Not only the phase of noise...

Modeling the Co-pol Phase Difference ?

- → First try: 2-layers system (*Freeman et al., POLINSAR'07*)
- \rightarrow Explore a simple explanation: a complex ε (due to salt)
- \rightarrow No radar wave penetration: surface scattering term only
- \rightarrow First order model: phase of the reflection coefficient

Going further: A second try using IEM

Fung 1992: $E_{pp}^{s} = E_{pp}^{k} + E_{pp}^{c} \rightarrow \text{complex fields (phase)}$

Kirchhoff field: $E_{pp}^{k} = C E_{0} \int f_{pp} \exp j[(k_{s} - k_{i}).r] dxdy = C E_{0} f_{pp} I_{k}$

Complementary field: $E_{pp}^{c} = \frac{C E_{0}}{8\pi^{2}} \int F_{pp} \exp j[u(x-x')+v(y-y')+k_{s}r'-k_{i}r]dxdydx'dxy'dudv$ $= \frac{C E_{0}}{8\pi^{2}}F_{pp}I_{c} \quad \text{with} \quad C = \frac{-jk}{4\pi R}\exp(-jkR)$

 f_{pp} and F_{pp} coefficients depend on *dielectric constant* and *incidence angle* only

$$\Phi_{hhvv} = \phi(HH) - \phi(VV) = arg(f_{hh}I_k + \frac{F_{hh}I_c}{8\pi^2}) - arg(f_{vv}I_k + \frac{F_{vv}I_c}{8\pi^2})$$

<u>Case 1</u>: Very rough surface $E_{pp}^{k} \gg E_{pp}^{c}$ $\rightarrow \Phi_{hhvv}^{k} \approx arg(f_{hh}) - arg(f_{vv}) = arg(R_{H}) - arg(R_{V})$ <u>Case 2</u>: "Intermediate roughness" $E_{pp}^{k} \approx E_{pp}^{c}$ and we make the assumption $I_{k} \approx \frac{I_{c}}{8\pi^{2}}$ $\rightarrow \Phi_{hhvv} \approx arg(f_{hh} + F_{hh}) - arg(f_{vv} + F_{vv})$

How to get dielectric constant values ?

- → Field measurements: Death Valley (CA) Lasne, Paillou, et al., IEEE TGARS, 2009
- → Laboratory measurements (water+salt, salts) Lasne, Paillou, et al., IEEE TGARS, 2008
- \rightarrow 3 cases considered (wet \rightarrow dry):
 - Saline water $\varepsilon = 53-26j$
 - Wet NaCl crystals $\varepsilon = 7-11j$
 - Dry NaCl crystals $\varepsilon = 3-3.5j$

Incidence angle θ = 39°

Conclusion

- $\to \Phi_{\rm HHVV}$ is a promising simple polarimetric signature to detect and monitor salty surfaces
- → The phase difference can be explained by the complex dielectric constant of soils
- → We propose an IEM-derived approach that fits observations, to be further studied + inversion process
- \rightarrow Need for field work experiments on chott El Djerid (inch Allah)