esa

→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

Towards Oil Slick Monitoring in the Arctic Environment

Presented by Camilla Brekke – University of Tromsø (UiT)

in collaboration with Ben Holt - JPL Cathleen Jones – JPL Stine Skrunes - UiT

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

NEW/THIN ICE COULD RESEMBLE OIL IN MIZ CESa

Radarsat-2 June 2011

ENVISAT November 2004

Photo: Benjamin Holt (JPL)

Both oil slicks and new/thin ice dampens Bragg waves and produces low NRCS.

Can multi-pol. and multi-frequency SAR data discriminate unmixed newly frozen sea ice from oil emulsified with sea water at the freezing point (-1.8°C, salinity 33 ‰)?

→ POLINSAR 2013

Crude oil

Photo: Kustbevakningen

OUTLINE OF TALK

<u>Theory:</u>

- Dielectric properties of relevant media
- Mixture modeling of oil/sea ice
- Co-polarization ratio

Analysis of real SAR data:

- RADARSAT-2: Oil pollution
- UAVSAR: Oil pollution
- AIRSAR: New/thin sea ice types

<u>Summary</u>

MIXTURE MODELING

Complex relative permittivity:

$$\varepsilon = \varepsilon' - i\varepsilon''$$

 $i = \sqrt{-1}$

ε': real permittivity.ε'': dielectric loss factor.

Linear mixture model (Ulaby et al., 1986):

$$\varepsilon_{m}^{\alpha} = \varepsilon_{h}^{\alpha} + v_{o} \left(\varepsilon_{o}^{\alpha} - \varepsilon_{h}^{\alpha} \right)$$

 α = 1: linear model

Eh: relative permittivity of unmixed sea ice (host material).

Eo: relative permittivity of unmixed oil.*vo:* volume fraction of oil in the mixture.

DIELECTRIC PROPERTIES OF UNMIXED OIL AND ICE

Sea ice:

Dielectric properties of sea ice relative to brine volume, from Carsey (Ed.) (1992):

Frequency	ε'	ε"
1 GHz	$3.12 + 0.009 \cdot V_b$	$0.04 + 0.005 \cdot V_b$
4 GHz	$3.05 + 0.0072 \cdot V_b$	$0.02 + 0.0033 \cdot V_b$
10 GHz	$3.0 + 0.012 \cdot V_b$	$0.0 + 0.01 \cdot V_b$

Volume fraction of brine in sea ice, -0.5°C>=T>=-22.9 °C , from Ulaby et al. (1986):

$$V_b = 10^{-3} S_i \left(-\frac{49.185}{T} + 0.532 \right)$$

where *Si* is the salinity in ‰ of the sea ice mixture.

Oil pollution:

Dielectric peroperties of oil, from Minchew et al. (2012):

 $\varepsilon_r = 2.3 - i0.02$

The dependence of the relative permittivity of oil on temperature is considered negligible.

LINEAR MIXTURE MODELING - OIL IN SEA ICE CESA

Unmixed values			
Oil	Sea ice $-1.8^{\circ}C$	Sea ice $-10^{\circ}C$	Sea ice $-20^{\circ}C$
2.3-i0.02	3.1283-i0.0446	3.1216-i0.0409	3.1209-0.0405

Real part decreases

Imaginary part increases (less negative)

Increased oil volume fraction in the mixture: -> real part moderately affected.

-> attenuation of signal in medium reduced.

LINEAR MIXTURE MODELING - OIL IN SEA ICE CESA

The dielectric loss factor is sensitive to frequency.

PENETRATION DEPTH

Depth at which radiation falls off to a certain level.

 $\delta_p = \frac{c}{2\omega \left| \text{Im}\left\{ \sqrt{\varepsilon_r} \right\} \right|}$

 $\begin{array}{l} \delta_p: \mbox{ penetration depth.} \\ \epsilon_r: \mbox{ complex dielectric constant.} \\ c: \mbox{ speed of light in vacuum.} \\ \omega: \mbox{ radian frequency of radiation.} \end{array}$

L-band: increasing penetration depth into mixture as a function of oil volume fraction.

Scattering matrix for a Bragg surface scatterer (slightly rough untilted surface):

$$S = \begin{bmatrix} R_H(\theta, \varepsilon_r) & 0\\ 0 & R_V(\theta, \varepsilon_r) \end{bmatrix}$$

$$R_{H}(\theta,\varepsilon_{r}) = \frac{\cos(\theta) - \sqrt{\varepsilon_{r} - \sin^{2}(\theta)}}{\cos(\theta) + \sqrt{\varepsilon_{r} - \sin^{2}(\theta)}}$$

 $R_V(\theta,\varepsilon_r) = \frac{(\varepsilon_r - 1)(\sin^2 \theta - \varepsilon_r (1 + \sin^2 \theta))}{(\varepsilon_r \cos \theta + \sqrt{\varepsilon_r - \sin^2 \theta})^2}$

Co-polarization ratio:

$$\frac{|R_V(\theta,\varepsilon_r)|^2}{|R_H(\theta,\varepsilon_r)|^2}$$

The co-pol ratio is independent of roughness and increases with θ dependent upon the complex relative permittivity of the surface.

Observations:

- New ice is closer to sea water while young ice is closer to 50/50 oil-ice mixture and crude oil.
- The distinction between the different media becomes more pronounced as θ increases.

CO-POL RATIOS FOR MIXTURES OF OIL-IN-ICE Cesa

<u>Larger θ and larger oil %:</u> Better contrast between oil emulsion and unmixed ice (several dB). <u>Smaller θ and smaller oil %: Oil emulsion becomes indistinguishable from unmixed ice.</u>

OIL SLICK EXPERIMENT AT SEA – RADARSAT2 C esa

Both mineral and monomolecular slicks discriminated from sea water, Skrunes et al. (2012).

OIL POLLUTION AT SEA – UAVSAR

Deepwater horizon accident, Gulf of Mexico - June 2010. L-band VV/HH.

UAVSAR 23 June 2010. Θ: 23 – 65 deg. Better contrast between oil and water at larger θ .

Wind-rows and internal variations visible.

UAVSAR L-band co-pol ratio sensitive to the oil volume fraction.

Oil % sucessfully estimated by fitting co-pol ratio to the tilted Bragg model, Minchew et al (2012).

NEW AND YOUNG LEAD ICE - AIRSAR

Roughned by frost flowers high in salinity?

→ POLINSAR 2013

<u>Theory:</u>

- Greater penetration depth into oil-ice mixture for L-band.
- Oil-ice mixtures have lower relative permittivity and lower VV/HH ratio than unmixed new/thin and young sea ice.
- Better unmixed ice vs. oil-ice emulsion separability at larger θ and larger oil %.

C-band (4 GHz):

- VV/HH ratio low for plant oil, oil-water emulsion and crude oil as compared to open sea water.
- VV/HH ratio high for new/thin sea ice compared to older ice types.

L-band (1 GHz):

- VV/HH ratio sensitive to oil volume fraction (oil-water emulsions).
- Surfaces roughened by frost flowers could be a problem.

Bäck, D., "Analysis of Polarimetric Signatures of Arctic Lead Ice Using Data from AIRSAR and RADARSAT", MSc Thesis, Dep. of Radio and Space Science, Chalmers Univ. of Tech., Göteborg, Sweden 2008.

Carsey, F. D. (Ed.), *"Microwave Remote Sensing of Sea Ice"*, AGU Geophysical Monograph 68, 1992.

Germain, K., "Applications on Spectral Microwave Radiometry to Sensing of Sea Ice and the Ocean Surface", PhD Thesis, Univ. of Massachusetts, May 1993.

Lee, J.-S. and Pottier, E., *"Polarimetric Radar Imaging. From Basics to Applications.",* CRC Press Taylor & Francis Group, 2009.

Minchew, B., Jones, C. E., Holt, B., "Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar", *IEEE Trans. of Geosci. and Remote Sensing,* Vol. 50, No. 10, Oct. 2012.

Skrunes, S., Brekke, C., Eltoft, T., "Detection of Ocean Surface Slicks by Multi-Polarization C- and X-band SAR Imagery", submitted *IEEE Trans. on Geosci. and Remote Sensing*, 2012.

Ulaby, F. T., Moore, R. K., and Fung, A. K., "*Microwave Remote Sensing Active and Passive*", Artech House, Inc., 1986.