On dual co-polarized SAR measurements of the Ocean surface

Alexander Myasoedov, RSHU, Russia Vladimir Kudryavtsev, RSHU/NIERSC, Russia Bertrand Chapron, IFREMER/RSHU, France Fabrice Collard, CLS, France Johnny Johannessen, NERSC, Norway

POLinSAR 2013 Workshop

Main Goal

To promote an effective and simple methodology

using SAR polarized information to

interpret and quantitatively assess role of different

scattering mechanisms in surface manifestation of

- Oceanic currents
- Slicks
- Wind field features

Original VV and HH images

Quad-polarized RADARSAT-2 image over Mediterranean

Coast (Begur/Spain)

Area: 40 km × 50 km Res: 5m (in A)x10m (in R)

17:40, 18th Dec 2010

 $32.7 \deg < \theta < 35.7 \deg$

Model: Scattering decomposition

Chapron et al., 1997; Quilfen et., 1999; Kudryavtsev et al., 2003

To interpret the observed SAR features HH and VV NRCS are represented as a sum of polarized scattering associated with 2-scale Bragg and nonpolarized from breaking waves

Polarization Ratio Scattering Model 2-scale Bragg scattering impact of breaking waves PR = σ \mathbf{O} w b C band - Upwind - 9<U10<11 m/s C band - Upwind - 9<U10<11 m/s 100 (C) (b) 6 8 80 8 80 NRCS VV Ŧ N/HH (Upwind) [dB] NRCS 60 60 polarized NRCS NRCS 40 polarized 40 ۲o۲ 20 b 20 0 10 20 30 40 50 0 ٥ 10 20 30 40 50 0 Incidence Angle [deg] Incidence Angle [deg]

wave breaking contribution to NRCS at $\theta = 30^{\circ}$

- ~ 30% for VV
- ~ 60% for HH

(e.g. see air-born C-band Du-Pol obs. by Mouche et al. 2006)

- PR = HH/VV deviates from PR Bragg

10

This justifies that radar returns from breaking waves (WB) play an important role

20

incidence angle [deg]

30

40

50

h h

 σ

C band - Upwind - U₁₀=10m/s

 $+ \sigma$

w b

h h

v v

 σ

 σ

- PR => 1, role of wave breaking is dominant
- PR => PR Bragg, role of wave breaking is weak

Polarization Ratio

It is well known that PR serves as an indicator of Bragg scattering

h h

w b

In our case study **mean PR** is - **1.5 dB ... - 2 dB** (0.7 linear units)

h h

 σ

at coastal area **PR = - 2.5 dB** (0.55 linear units) close to 2scale Bragg model predictions

PR => 1 in "bright" current signatures

OUTCOME:

PR = HH/VV significantly deviates from PR Bragg for analyzed images This justifies that radar returns from breaking waves (WB) play an important role

Polarization Ratio

Features:

w b

- *In slicks:* Bragg waves are killed, PR => 1

h h

0 B

 σ

h h

 σ

- Wave-current interact.: (i) WB enhanced PR => 1 (ii) WB suppressed PR => PR_Bragg

- Down-wind condition

WB do not scatter PR => PR_Bragg

Polarization Difference VV-HH

PD is mostly controlled by short wind waves around the Bragg wavenumber

In C-band these waves have "quick-response" to surface wind (~10m relaxation scale) $\sigma_{0}^{pp} = \sigma_{0B}^{pp} + \sigma_{wb}$ $\sigma_{0}^{\nu\nu} = \sigma_{0B}^{\nu\nu} + \sigma_{wb}$ PD-image should $\Delta \sigma_{0} = \sigma_{0}^{vv} - \sigma_{0}^{hh} = - \left\{ \begin{array}{c} & & \\$ reflect -wind field variability -presence of slicks Incidence: 40.5° - C Band C band - Upwind - θ =37.5deg 0.10 0.10 Down-wind 0.08 0.05 Δσ[linear unit] 0.06 Δσ [linear] 0.00 0.04 -0.050.02 Wind Speed U10 = 14 m/ 0.00 -0.10

> wind speed [m/s] (air-born C-band Du-Pol obs. by Mouche et al. 2006)

90

180

270

360

10

5

0

15

20

Polarization Difference

Features:

Non-polarized contribution from breaking waves (NP WB)

 $\sigma_{0}^{\nu\nu};\sigma_{0}^{hh}$

$$PD = \sigma \frac{vv}{0B} - \sigma \frac{hh}{0B}$$

PD directly relates to short Bragg waves which are sensitive to wind field variability & oil slicks "new" characteristic - NP

$$\sigma_{wb} = \sigma_{0}^{vv} - \Delta \sigma_{0} / (1 - p_{B})$$

$$p_{B} = \sigma_{0B}^{hh} / \sigma_{0B}^{vv}$$

NP – reflects

wave current interaction through variations in wave breaking

Non-polarized contribution

Features:

eeecls

- Slicks are not visible
 - Current signatures are well visible

Wind field feature is well expressed

Ocean surface features manifestations interpretation

2.0

h

Β

5

Simple and an effective approach

Transformation of VV and HH into new images:

Polarization Difference (PD) VV-HH

-wind field variability -presence of slicks Non-Polarized (NP Wb) contribution to NRCS

-wave current interaction -wind field variability

Detection and discrimination of various ocean phenomena, e.g.:

 surface ocean current features and discrimination from wind field variability

- Detection of oil slicks and discrimination from look-alikes (calm area and current features)

- Detection of large-scale variability in wind vector field.

Some References

[1] V. N. Kudryavtsev, D. Hauser, G. Caudal, and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model," Journal of Geophysical Research, vol. 108, no. C3, p. 24, Jan. 2003.
[2] V. N. Kudryavtsev, D. Akimov, J. A. Johannessen, and B. Chapron, "On radar imaging of current features: 1. Model and comparison with observations," Journal of Geophysical Research, vol. 110, no. C07016, pp. 1–27, Jul. 2005.
[3] A. A. Mouche, D. Hauser, and V. Kudryavtsev, "Radar scattering of the ocean surface and sea-roughness properties: A combined analysis from dual-polarizations airborne radar observations and models in C band," Journal of Geophysical Research, vol. 111, no. C9, p. C09004, 2006.

[4] V. Kudryavtsev, A. Myasoedov, B. Chapron, J. A. Johannessen, and F. Collard,
"Imaging mesoscale upper ocean dynamics using synthetic aperture radar and optical data," Journal of Geophysical Research, vol. 117, no. C4, p. C04029, Apr. 2012.
[5] V. Kudryavtsev, A. Myasoedov, B. Chapron, J. A. Johannessen, and F. Collard,
"Joint sun-glitter and radar imagery of surface slicks," Remote Sensing of Environment, vol. 120, pp. 123–132, May 2012.

Kudryavtsev et al. On dual co-polarized SAR measurements of the Ocean surface. IEEE GRSL. Accepted 26 Sep. 2012 (in press).

Scattering Decomposition :

$$\sigma_0^{pp} = \sigma_{0B}^{pp} + \sigma_{wb}$$

where

 σ_{0B}^{pp} is 2-scale Bragg scattering

 $\sigma_{_{w\,b}}$ is non-polarized (NP) imapct of breaking waves

Polarization Ratio (PR):

$$P = \frac{\sigma_0^{hh}}{\sigma_0^{vv}} = \frac{\sigma_{0B}^{hh} + \sigma_{wb}}{\sigma_{0B}^{vv} + \sigma_{wb}}$$

Polarization Difference (PD):

$$\Delta \sigma_0 \equiv \sigma_0^{vv} - \sigma_0^{hh} = \sigma_{0B}^{vv} - \sigma_{0B}^{hh}$$

N P contribution of breaking waves:

$$\sigma_{wb} = \sigma_0^{vv} - \Delta \sigma_0 / (1 - p_B)$$

where $p_B = \sigma_{0B}^{hh} / \sigma_{0B}^{vv}$ is PR for Bragg scattering

Ocean surface features manifestations

Features:

- SlicksSlieksdanelittatk Brand for an end and Billago - Currect arige ateres are well visible --Walge-Current Wind fieldsfigetteneous (WellBegenessed - Local wiRR field (ii) WB supfectssred can be Renther Baristinage wind spread alteria trans - Didavid skyirfalceokralitikort ro tatific vet g endse at her PR =>dRergerage

Wind Field Features

Polarization Ratio

$$PR = \frac{\sigma_0^{hh}}{\sigma_0^{vv}} = \frac{\sigma_{0B}^{hh} + \sigma_{wb}}{\sigma_{0B}^{vv} + \sigma_{wb}}$$

Some C-band PR properties from Mouche et al. 2006.

- PR = HH/VV significantly deviates from PR_Bragg for analyzed images, This justifies that radar returns from breaking waves (WB) play important role.

- When PR->1, role of wave breaking is dominant.
- and when role of wave breaking is weak, PR -> PR_Bragg

Polarization Difference VV-HH

PD is mostly controlled by short wind waves around the Bragg wavenumber. In C-band these waves have "quick-response" to surface wind (~10m relaxation scale). PD-image should reflectwind field variability and presence of slicks

 $\Delta \sigma_0 \equiv \sigma_0^{\nu\nu} - \sigma_0^{hh} = \sigma_{0B}^{\nu\nu} - \sigma_{0B}^{hh}$

Non-polarized contribution from breaking waves (NP)

Bragg PR is a function of θ only and since PD reflects wind field variability the NP image should mainly reflect variations in wave breaking field associated with wave current interaction

$$\sigma_{wb} = \sigma_0^{vv} - \Delta \sigma_0 / (1 - p_B),$$

where $p_B = \sigma_{0B}^{hh} / \sigma_{0B}^{vv}$ is PR for Bragg scattering

 σ_{sp}

Electromagnetic Unit

Approach:

Surface is split into "regular" surface (1-q) and zones of wave breaking (q)

q

Wave - Current Interaction :

$$M = B(\mathbf{k}) / B(\mathbf{k}) \propto \omega^{-1} (\mathbf{c} / u_*)^2 m_k^{i,j} u_{i,j}$$

Integral Parameters governs by :

$$M \propto \omega^{-1} (c / u_{*})^{2} m_{k} \nabla \cdot u$$

$$s^{2} \propto \int M k^{2} B (k) dk \propto \nabla \cdot u$$

$$q \propto \int M k^{-2} \beta B (k) dk \propto \nabla \cdot u$$

Bragg W aves modulations affected by W B

 $B(\mathbf{k}_{br}) \propto q \propto \nabla \cdot \mathbf{u}$

N R C S :
$$\sigma_0^{pp} = \sigma_{BR}^{pp} (1 - q) + \sigma_{SP} \cdot q$$

Radar Imaging Model (RIM) Kudryavtsev et al., 2005; Johannessen et al., 2005

