Polarimetric adaptive speckle filtering driven by temporal statistics for PSI applications

Victor D. Navarro-Sanchez, and Juan M. Lopez-Sanchez

Signals, Systems and Telecommunications Group University of Alicante, Spain

> vd.navarro@ua.es juanma.lopez@ua.es

Universitat d'Alacant Universidad de Alicante

Contents

- Introduction
- Algorithm
 - Polarimetric Homogeneity Test
 - PSI optimization review
 - Joint processing of PS and DS
- Results
- Summary

Universitat d'Alacant Universidad de Alicante

Persistent Scatterers Interferometry (PSI)

- Used to measure surface deformation evolution from SAR data
- Select for processing only good quality pixels:
 - Amplitude dispersion index \rightarrow Persistent Scatterers (point-like, PS)
 - -Average coherence \rightarrow Coherent Pixels (distributed scatterers, DS)
- Urban environments: Mix of PS and DS
 - Estimation of DS parameters \rightarrow speckle filtering
 - Speckle filtering \rightarrow loss of PS information due to averaging
- How to process together PS and DS?

Introduction

Speckle filtering:

- Boxcar (multi-look) or sliding window:
 - Suitable for homogeneous areas with fully developed speckle
 - Resolution loss → not suitable for PS analysis
- Spatial adaptive speckle filters:
 - Adapt to filter only homogeneous areas
 - Driven by spatial statistics \rightarrow spatial estimation window (**PS loss**)
- Spatial adaptive filters driven by temporal information:
 - Driven by temporal statistics \rightarrow no initial spatial estimation window
 - Homogeneous areas are filtered while PS are preserved
 - Require a sufficient number of SAR images

[Ferretti'11] → DespecKS

• Two pixels are considered Statistically Homogeneus Pixels (SHP) based on a two-sample Kolmogorov-Smirnov test:

- Compares p.d.f. of the pixel amplitudes.
- P.d.f are estimated from multi-temporal data.
- Pixels with sufficient SHP neighbours are processed as DS.
- Pixels with few SHP neighbours are processed as PS.

Limitations:

- Only takes into account amplitude information
- Conceived for single-pol data
- Multi-channel p.d.f. estimation is not straightforward

Universitat d'Alacant Universidad de Alicante

Objectives:

- Polarimetric, PS preserving adaptive filter approach
- Polarimetric PSI with joint processing of PS and DS

INCREASED MAP DENSITY AND ACCURACY

Universitat d'Alacant Universidad de Alicante

Algorithm steps:

- Find homogeneous areas: Polarimetric Homogeneity Test
- Discriminate PS and DS
- Polarimetric Optimization. Find polarimetric channel that:
 - Minimizes amplitude dispersion for each PS
 - Maximizes average interferometric coherence for each DS
- Select pixels with good quality \rightarrow low σ_{ϕ}
- Process using any PSI technique

Target vector (Pauli basis):

$$\mathbf{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} HH + VV \\ HH - VV \\ 2HV \end{bmatrix}$$

Coherency matrix:

$$\mathbf{T} = E[\mathbf{k}\mathbf{k}^{\dagger}] \rightarrow \mathbf{T} = \frac{1}{L}\sum_{l=1}^{L}\mathbf{k}_{l}\cdot\mathbf{k}_{l}^{\dagger}$$

$$\mathbf{k} \sim \mathcal{N}_{q}^{\mathbb{C}}(0, \mathbf{\Sigma}) \longrightarrow \mathbf{T} \sim \mathcal{W}_{q}^{\mathbb{C}}(L, \mathbf{\Sigma})$$

Temporal coherency matrix:

$$\mathbf{T} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{k}_n \cdot \mathbf{k}_n^{\dagger} \quad \text{N images} \rightarrow \text{N independent samples}$$

Universitat d'Alacant Universidad de Alicante

Equality test for Wishart distributed matrices [Conradsen et al. 2003]:

• Hypothesis:
$$oldsymbol{\Sigma}_i = oldsymbol{\Sigma}_j$$

• Test
$$\rightarrow$$
 Likelihood ratio: Λ

$$\mathbf{L} = \frac{\left|\mathbf{T}_{\mathbf{i}}\right|^{N_{i}} \left|\mathbf{T}_{\mathbf{j}}\right|^{N_{j}}}{\left|\frac{N_{i}\mathbf{T}_{\mathbf{i}} + N_{j}\mathbf{T}_{\mathbf{j}}}{N_{i} + N_{j}}\right|^{N_{i} + N_{j}}}$$

Equality condition:

$$\Lambda > c_{\beta} \quad P_{fa}(c_{\beta}) = P\left(\Lambda \le c_{\beta}\right) = \beta$$

Hyphotesis confirmed \rightarrow Polarimetrically Homogeneous Pixels (PHP)

- Pixels with more than *R* PHP are treated as DS (filtered)
- Pixels with less than *R* PHP are treated as PS (not filtered)

Search window = 15×15 log Λ threshold = -20

Number of identified PHP (Barcelona)

Universitat d'Alacant Universidad de Alicante

Polarimetric adaptive speckle filter $\rightarrow R = 20$

Detail of Barcelona airport. HH+VV amplitude

Universitat d'Alacant Universidad de Alicante

PSI optimization review

General framework and formulation for vector interferometry [Cloude and Papathanassiou, 1998].

Frascati, Italy. 28 Jan -1 Feb

PSI optimization review

• Average coherence optimization:

Maximize:

$$\overline{|\gamma|} = \frac{1}{K} \sum_{k=1}^{K} |\gamma_k|, \text{ with } \gamma_k(\omega) = \frac{\omega^{\dagger} \Omega_{ij} \omega}{\sqrt{\omega^{\dagger} \mathbf{T}_{ii} \omega} \sqrt{\omega^{\dagger} \mathbf{T}_{jj} \omega}} -$$

$$\begin{cases} \mathbf{T}_{ii} = E[\mathbf{k}_i \mathbf{k}_i^{\dagger}] \\ \mathbf{T}_{jj} = E[\mathbf{k}_j \mathbf{k}_j^{\dagger}] \\ \mathbf{\Omega}_{ij} = E[\mathbf{k}_i \mathbf{k}_j^{\dagger}] \end{cases}$$

• Amplitude dispersion optimization:

Minimize:

$$D_A = \frac{\sigma_a}{\bar{a}} = \frac{1}{|\boldsymbol{\omega}^{\dagger} \mathbf{k}| \sqrt{N-1}} \sqrt{\sum_{i=1}^N \left(|\boldsymbol{\omega}^{\dagger} \mathbf{k}_i| - \overline{|\boldsymbol{\omega}^{\dagger} \mathbf{k}|} \right)^2}$$

Constraint: $\omega_i = \omega_j = \omega \forall i, j \rightarrow ESM$

Universitat d'Alacant Universidad de Alicante

Joint processing of DS and PS

- Common quality criterion \rightarrow phase standard deviation σ_{ϕ}
 - Amplitude dispersion: $D_A \approx \sigma_{\phi}$ for low values of DA (high SNR) [Ferretti et al., 2001]

Universitat d'Alacant Universidad de Alicante

Joint processing of DS and PS

Data set:

41 images of Murcia (Spain) Feb-09 to May-10

- TerraSAR-X dual-pol: HH,VV
- Mean incidence angle: 37.8°
- Resolution: 6.6m Az, 1.17m Rg
- Spacing: 2.44m Az, 0.91m Rg
- Ovs. factors: 2.7 Az, 1.28 Rg

R = HH, G = VV, B = HH-VV

Images provided by DLR under the framework of project GEO0389

Universitat d'Alacant Universidad de Alicante

Data set:

31 images of Barcelona (Spain) Jan-10 to Feb-12

- RADARSAT-2 full-pol
- Mean incidence angle: 29°
- Resolution: 7.6m Az, 5.2m Rg
- Spacing: 5.1m Az, 4.7m Rg
- Ovs. factors: 1.49 Az, 1.11 Rg

R = HH-VV G = 2HV B = HH+VV

Images provided by MDA under the framework of project SOAR EU 6779

Murcia (TERRASAR-X, DP)

σ_{ϕ} threshold = 0.25 ($\approx D_A 0.25$)

HH	4.29 %
ESPO, DP	9.81 %
LR Filter + ESPO	15.02 %

Universitat d'Alacant Universidad de Alicante

Universitat d'Alacant Universidad de Alicante

Summary

- An adaptive speckle filtering approach has been presented:
 - Polarimetric
 - PS compatible
- Methodology for joint processing of PS and DS proposed
- Important increase of deformation maps density:
 - TerraSAR-X dual-pol
 - 1.53 times increase w.r.t. ESPO optimized data
 - 3.50 times increase w.r.t. single-pol (HH)
 - RADARSAT-2 full-pol
 - 1.35 times increase w.r.t. ESPO optimized data
 - 9.26 times increase w.r.t. single-pol (HH)

Polarimetric adaptive speckle filtering driven by temporal statistics for PSI applications

Victor D. Navarro-Sanchez, and Juan M. Lopez-Sanchez

Signals, Systems and Telecommunications Group University of Alicante, Spain

> vd.navarro@ua.es juanma.lopez@ua.es

Universitat d'Alacant Universidad de Alicante

