→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

Snow property extraction based on polarimetry and differential SAR interferometry

S. Leinß, I. Hajnsek

Earth Observation and Remote Sensing, Institute of Enviromental Science, ETH Zürich

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

• X-Band: v = 9.65 GHz, λ = 3 cm, Resolution: 3 m, Repeat cycle: 11 days

• Monostatic **multi-pass** Interferometry: $\Delta t = 11 \text{ days}$

Bistatic single-pass Interferometry: $\Delta t = 0$

Why Radar techniques for Snow?

- Snow is a thin volume layer which is mostly transparent for microwave (T \ll 0°C).
- High frequency required to get interaction and to avoid total penetration: 5 20 GHz.

 How can we characterize snow by means of the complex interferometric coherence?

$$\hat{\gamma} = \gamma \cdot e^{i\varphi} = \frac{\langle S_1 \cdot S_2^* \rangle_{\text{ens.}}}{\sqrt{\langle |S_1|^2 \rangle \langle |S_2|^2 \rangle}}$$

- What causes polarimetric phase differences and temporal decorrelation?
- Under which conditions can we characterize snow?
 - Snow fall, melting, temperature change and wind drift cause high **temporal variations**!
 - Which parameters do we get?
 - Snow / no snow?
 - Snow depth?
 - Snow water equivalent? Soil information?

Water content?

Stratigraphy?

Sodankylae

IN

lorwe

Google Earth view

N82-30

N77"30

rorest

2011 Tele Atlas

Wetland / bog ,

Photos from NOSREX-III ground campaign,

Courtesy to ARC FMI

Sodankylae 2012: Repeat pass coherence ($\Delta t = 11 d$)

Setting ...

stable

weather

+20 cm

snow

+10 cm

snow

+10 cm

snow

cold stable weather,

snow depth: 80 cm

No snow left, <u>+10°C _</u>

. Melting...

Polarimetric Phase Difference (PPD)

$$\hat{\gamma} = \gamma \cdot e^{i\varphi} = \frac{\langle S_1 \cdot S_2^* \rangle_{\text{ens.}}}{\sqrt{\langle |S_1|^2 \rangle \langle |S_2|^2 \rangle}} \longrightarrow \phi_{\text{c}} = \phi_{\text{VV}} - \phi_{\text{HH}} \quad \text{(co-polar)}$$

What about this:

Is there any signature of snow? Snow as a layered structure?

 $\phi_{c} = ???$

Snow is structures as layers. Microwaves reflections at layers are confirmed by the Swiss Institute for Snow and Avalanche Research (SLF).

60 cm

Ice layers in a block of wind-compressed snow

co-polar PPD over the winter

Ground truth vs. PPD ϕ_c

Measure snow depth in the field.
Classification: no Forest / Forest.
Calculate PPD: φ_c = φ_{VV} - φ_{HH}
Compare PPD with snow depth.
Plot correlations for acquisitions.

phase difference $\Delta \phi$

+20°

-20°

campaign and acquisition)

backscatter and snow tracks

phase difference $\Delta \phi$

+20°

-20°

Why is Snow depth proportional to $(\phi_{VV} - \phi_{HH})$?

Suggestions:

- 1. Propagation speed differs for HH and VV.
- 2. Different penetration depth for HH and VV.
- 3. Linear combination of phase-jumps at different layers.

#2 is supported by different Fresnel-coefficients at snow layers for polarizations.

Conclusion

Repeat pass InSAR:

Snowfall and melting events cause strong decorrelation of repeat pass Interferometric coherence.

-> Microwave interaction with snow layer!

Polarimetry:

- Clear evidence for correlation between PPD ϕ_{VV} - ϕ_{HH} and snow over open area. (Volume scattering in forests destroys a clear phase signal).
- Model is under developement and ideas area welcome!

Special thanks to FMI, Enveo, Gamma Remote Sensing, EC, NASA JPL, WSL-SLF for ground campaigns. *Distributed measurements* make incomparably better validations possible than fixed stations.

Spatial comparison of snow depth along transect with PPD.

Co-polar phase difference ϕ_c follows the snow depth along the transect.

Change detection by coherence decay:

Strong temporal decorrelation in X-band caused by Snowfall, melting or strong wind drift.

For each point the coherences of at least 8 scenes of the same testsite were averaged.

- Decay time of coherence: $t_{1/2} = 4.2$ days.
- Repeat-times of *a few days* are favourable.

Decay of coherence for X-band TSX data

calculated from each scene were averaged. The red line is a

Coherence yvv at peak of coherence histogram

Acquisition j

Differential-InSAR: Local phase patterns due to freezing?

Local phase pattern correlate with freezing structures on the ground. Up/down lift by freezing/thawing cycles?

InSAR: Random Volume over Ground Model

Expected volume coherence.

f(z): Vertical reflectivity function =

"backscattered radiation per depth volume".

Realistic reflectivity function / modelled reflectivity function for a snow pack.

Expected coherence for homogeneous snow layer over ground:

Good sensitivity to snow volume can be archived for $K_z = \sim 2...7 \text{ m}^{-1}$ corresponding to baselines of

$$b_{\perp} = 5...8 \text{ km} \rightarrow \text{terraSAR-X} (h = 514 \text{ km})$$

 $b_{\perp} = 10...30 \text{ m} \rightarrow \text{airplane} (h_{AGL}=2.5 \text{ km})$
 $b_{\perp} = 15...25 \text{ m} \rightarrow \text{airplane} (h_{AGL}=1.5 \text{ km})$

$$B_{\perp} = \Delta \theta \cdot R_0 = \sin \theta \cdot \frac{\kappa_z \lambda}{4\pi} \cdot R_0$$

Baseline overview for TanDEM-X

Perpendicular baselines (m) between TanDEM-X and TerraSAR-X for Churchill datasets.

Date of acquisition (dd/mm/yyyy).

DEM generation with TDX

Generation of a DEM

TanDEM-X Pol-InSAR: DEM(VV) vs. DEM(HH)

Polarimetry: Phase differences VV-HH

Values γ < 0.4 are masked and set to the average phase difference.

TanDEM-X: Double D-InSAR

Differential complex coherence γ_{MM} (t+11) * $\overline{\gamma}_{VVV}$ ((tt))

Interferometry data churchill

- Abs_coherence
- complex interferogram.
- (interferogram)

